doi: 10.15389/agrobiology.2017.5.878eng

UDC 633.31/.37:631.461.52:577.1

Acknowlegdgements:
Supported financially by Russian Science Foundation (№ 14-04-00383) and by grant from President of the Russian Federation for leading scientific schools (НШ-6759.2016.4)

 

ANTIOXIDANT DEFENSE SYSTEM IN SYMBIOTIC NODULES
OF LEGUMES (review)

K.A. Ivanova, V.E. Tsyganov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail tsyganov@arriam.spb.ru (corresponding author)

ORCID:
Ivanova K.A. orcid.org/0000-0002-9119-065X
Tsyganov V.E. orcid.org/0000-0003-3105-8689

Received December 22, 2015

Nitrogen-fixing nodules are formed on the roots of leguminous plants as a result of their interaction with soil bacteria, called rhizobia. Nodule development is based on the exchange of signaling molecules that leads to coordinated gene expression in both partners. This process is accompanied by differentiation of both plant and bacterial cells leading to formation of infected plant cells, filled with nitrogen-fixing forms of rhizobia, called bacteroids. The bacteroid is separated from the plant cell cytoplasm by the peribacteroid membrane and forms an organelle-like structure called the symbiosome (A.V. Tsyganova et al., 2017). The main function of the symbiotic nodule is to maintain the microaerophilic conditions required for working of the rhizobial nitrogen fixation enzyme — nitrogenase, which is extremely sensitive to oxygen. Nitrogen-fixing nodules produce an abundance of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These are formed due to auto-oxidation of leghemoglobin in the cytoplasm, oxidation of nitrogenase and ferredoxin in symbiosomes, and functioning of electron transport chains in mitochondria, symbiosomes, and peroxisomes (C. Chang et al., 2009). ROS and RNS molecules are involved in different signal transduction pathways; therefore, the nodule antioxidant system cannot simply eliminate ROS and RNS, but must maintain their concentration in the cell at the certain level (C.W. Ribeiro et al., 2015). Most antioxidants presented in plant organs are also found in the nodule, however, at a higher concentration, which is probably due to the high intensity of the processes associated with biological nitrogen fixation. These are enzymes superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, and peroxiredoxins, as well as millimolar concentrations of non-enzymatic elements (primarily ascorbic acid and glutathione) (M. Becana et al., 2010). It has been discovered that Legumes harbor a unique homologue of glutathione, homoglutathione, both of which exhibit similar functions and specificity. However, it is still not clear why some Legumes evolved the ability to synthesize two different thiol compounds and require a double regulatory mechanism of the cell cycle including activation by glutathione and inhibition of cytokinesis by homoglutathione (T. Pasternak et al., 2014). It has now been shown that an increase in the level of glutathione leads to an increase in the efficiency of nitrogen fixation, while there is no similar data for homoglutathione. Considering that for the functioning of the nodule a balance in the ratio of glutathione and homoglutathione is necessary, it is evident that increasing the level of nitrogen fixation by modifying the levels of these thiols is a non-trivial task. Moreover, it is necessary to account for the influence of other components of the antioxidant system. It should be noted that the rhizobial antioxidants play an important role in the functioning of the nitrogen fixing nodule (C.W. Ribeiro et al., 2015). In this review, we will consider the main components of the plant antioxidant system in the nodule. A deeper understanding of its functioning is necessary to develop conditions for increasing the efficiency of biological nitrogen fixation.

Keywords: symbiotic nodule, antioxidants, redox potential, glutathione, homoglutathione, ascorbate, ascorbate-glutathione cycle, thiol peroxidases, redoxins, superoxide dismutase.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Guinel F.C., Geil R.D. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can. J. Bot., 2002, 80(7): 695-720 CrossRef
  2. Tsyganov V.E., Voroshilova V.A., Priefer U.B., Borisov A.Y., Tikhonovich I.A. Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium-pea (Pisum sativum L.) symbiosis. Ann. Bot., 2002, 89(4): 357-366 CrossRef
  3. Popp C., Ott T. Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr. Opin. Plant Biol., 2011, 14(4): 458-467 CrossRef
  4. Kawaharada Y., Kelly S., Nielsen M.W., Hjuler C.T., Gysel K., Muszynski A., Carlson R.W., Thygesen M.B., Sandal N., Asmussen M.H., Vinther M., Andersen S.U., Krusell L., Thirup S., Jensen K.J., Ronson C.W., Blaise M., Radutoiu S., Stougaard J. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature, 2015, 523: 308-312 CrossRef
  5. Tsyganova A.V., Kitaeva A.B., Brevin N.Dzh., Tsyganov V.E. Cellular mechanisms of nodule development in legume plants. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 34-40 (in Russ.).    
  6. Guinel F.C. Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types. Botany, 2009, 87: 1117-1138 CrossRef
  7. Tsyganova A.V., Kitaeva A.B., Tsyganov V.E. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. Funct. Plant Biol., 2017 CrossRef
  8. Tsyganov V.E., Voroshilova V.A., Herrera-Cervera J.A., Sanjuan-Pinilla J.M., Borisov A.Y., Tikhonovich I.A., Priefer U.B., Olivares J., Sanjuan J. Developmental downregulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum. New Phytol., 2003, 159: 521-530 CrossRef
  9. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A.E., Barloy-Hubler F., Galibert F., Kondorosi A., Kondorosi E. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium—legume symbiosis. PNAS USA, 2006, 103(13): 5230-5235 CrossRef
  10. Baudouin E., Pieuchot L., Engler G., Pauly N., Puppo A. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol. Plant-Microbe Interact., 2006, 19: 970-975 CrossRef
  11. Meakin G.E., Bueno E., Jepson B., Bedmar E.J., Richardson D.J., Delgado M.J. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology, 2007, 153: 411-419 CrossRef
  12. Horchani F., Prévot M., Boscari A., Evangelisti E., Meilhoc E., Bruand C., Raymond P., Boncompagni E., Aschi-Smiti S., Puppo A., Brouquisse R. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol., 2011, 155(2): 1023-1036 CrossRef
  13. Cueto M., Hernández-Perera O., Martín R., Bentura M.L., Rodrigo J., Lamas S., Golvano M.P. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett., 1996, 398(2-3): 159-164 CrossRef
  14. Becana M., Matamoros M.A., Udvardi M., Dalton D.A. Recent insights into antioxidant defenses of legume root nodules. New Phytol., 2010, 188(4): 960-976 CrossRef
  15. Ribeiro C.W., Alloing G., Mandon K., Frendo P. Redox regulation of differentiation in symbiotic nitrogen fixation. Biochim. Biophys. Acta, 2015, 1850(8): 1469-1478 CrossRef
  16. Damiani I., Pauly N., Puppo A., Brouquisse R., Boscari A. Reactive oxygen species and nitric oxide control early steps of the Legume — Rhizobium symbiotic interaction. Front. Plant Sci., 2016, 7 CrossRef
  17. Meyer Y., Buchanan B.B., Vignols F., Reichheld J.P. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet., 2009, 43: 335-367 CrossRef
  18. Meyer Y., Belin C., Delorme-Hinoux V., Reichheld J.P., Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antiox. Redox. Signal., 2012, 17: 1124-1160 CrossRef
  19. Gest N., Gautier H., Stevens R. Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot., 2013, 64: 33-53 CrossRef
  20. Foyer C.H., Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol., 2012, 155: 2-18 CrossRef
  21. Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans J., Marquez-Garcia B., Queval G., Foyer C.H. Glutathione in plants: an integrated overview. Plant Cell Environ., 2012, 35: 454-484 CrossRef
  22. Harrison J., Jamet A., Muglia C.I., Van de Sype G., Aguilar O.M., Puppo A., Frendo P. Glutathione plays a functional role in growth and symbiotic capacity of Sinorhizobium meliloti. J. Bacteriol., 2005, 187: 168-174 CrossRef
  23. Groten K., Vanacker H., Dutilleul C., Bastian F., Bernard S., Carzaniga R., Foyer C.H. The roles of redox processes in pea nodule development and senescence. Plant Cell Environ., 2005, 28: 1293-1304 CrossRef
  24. Muglia C., Comai G., Spegazzini E., Riccillo P.M., Aguilar O.M. Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules. FEMS Microbiol. Lett., 2008, 286: 191-198 CrossRef
  25. Tsyganova A.V., Tsyganov V.E., Borisov A.Yu., Tikhonovich I.A., Brevin N.Dzh. Ekologicheskaya genetika, 2009, 7(3): 3-9 (in Russ.).    
  26. Dalton D.A., Langeberg L., Treneman N. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiologia Plantarum, 1993, 87: 365-370 CrossRef
  27. Matamoros M.A., Dalton D.A., Clemente M.R., Rubio M.C., Ramos J., Becana M. Biochemistry and molecular biology of antioxidants in the Rhizobia-Legume symbiosis. Plant Physiol., 2003, 133(2): 499-509 CrossRef
  28. Chang C., Damiani I., Puppo A., Frendo P. Redox changes during the Legume—Rhizobium symbiosis. Mol. Plant, 2009, 2: 370-377 CrossRef
  29. Marino D., Pucciariello C., Puppo A., Frendo P. The redox state, a referee of the legume—Rhizobia symbiotic game. Adv. Bot. Res., 2009, 52: 115-151 CrossRef
  30. Maughan S., Foyer C.H. Engineering and genetic approaches to modulating the glutathione network in plants. Physiol. Plant., 2006, 126: 382-397 CrossRef
  31. Mullineaux P.M., Rausch T. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth. Res., 2005, 86(3): 459-474 CrossRef
  32. Frendo P., Hernández-Jiménez M.J., Mathieu C., Duret L., Gallesi D., Van de Sype G., Hérouart D., Puppo A.A. Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol., 2001, 126: 1706-1715 CrossRef
  33. Matamoros M.A., Clemente M.R., Sato S., Asamizu E., Tabata S., Ramos J., Moran J.F., Stiller J., Gresshoff P.M., Becana M. Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Mol. Plant-Microbe Interact., 2003, 16(11): 1039-1046 CrossRef
  34. Cairns N.G., Pasternak M., Wachter A., Cobbett C.S., Meyer A.J. Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol., 2006, 141: 446-455 CrossRef
  35. Pasternak M., Lim B., Wirtz M., Hell R., Cobbett C.S., Meyer A.J. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. The Plant J., 2008, 53(6): 999-1012 CrossRef
  36. Moran J.F., Iturbe-Ormaetxe I., Matamoros M.A., Rubio M.C., Clemente M.R., Brewin N.J. Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Plant Physiol., 2000, 124: 1381-1392 CrossRef
  37. Clemente M.R., Bustos-Sanmamed P., Loscos J., James E.K., Pérez-Rontomé C., Navascués J. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. J. Exp. Bot., 2012, 63: 3923-3934 CrossRef
  38. Pucciariello C., Innocenti G., Van de Velde W., Lambert A., Hopkins J., Clément M., Ponchet M., Pauly N., Goormachtig S., Holsters M., Puppo A. (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium melilotiPlant Physiol., 2009, 151(3): 1186-1196 CrossRef
  39. Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science, 2008, 321(5891): 952-956 CrossRef
  40. Peleg-Grossman S., Golani Y., Kaye Y., Melamed-Book N., Levine A. NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes. PLoS ONE, 2009, 4(12): 83-99 CrossRef
  41. Frendo P., Harrison J., Norman C., Hernández-Jiménez M.J., Van de Sype G., Gilabert A., Puppo A. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol. Plant-Microbe Interact., 2005, 18: 254-259 CrossRef
  42. Vernoux T., Wilson R.C., Seeley K.A., Reichheld J.P., Muroy S., Brown S., Maughan S.C., Cobbett C.S., van Montagu M., Inzé D. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell, 2000, 12: 97-109 CrossRef
  43. Diaz-Vivancos P., Dong Y.P., Ziegler K., Markovic J., Pallardó F., Pellny T.K., Verrier P., Foyer C.H. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J., 2010, 64: 825-838 CrossRef
  44. Diaz-Vivancos P., Wolff T., Markovic J., Pallard O.F.V., Foyer C.H. A nuclear glutathione cycle within the cell cycle. Biochem. J., 2010, 431: 169-178 CrossRef
  45. Matamoros M.A., Moran J.F., Iturbe-Ormaetxe I., Rubio M.C., Becana M. Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol., 1999, 121: 879-888 CrossRef
  46. El Msehli S., Lambert A., Baldacci-Cresp F., Hopkins J., Boncompagni E., Smiti S.A., Hérouart D., Frendo P. Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol., 2011, 192(2): 496-506 CrossRef
  47. Ribeiro C.W., Baldacci-Cresp F., Pierre O., Larousse M., Benyamina S., Lambert A., Hopkins J., Castella C., Cazareth J., Alloing G., Boncompagni E. Regulation of differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant thioredoxin s1. Curr. Biol., 2017, 27(2):250-256 CrossRef
  48. Colville L., Sáez C.M.B., Lewis G.P., Kranner I. The distribution of glutathione and homoglutathione in leaf, root and seed tissue of 73 species across the three sub-families of the Leguminosae. Phytochemistry, 2015, 115: 175-183 CrossRef
  49. Pasternak T., Asard H., Potters G., Jansen M.A. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.). Plant Physiol. Biochem., 2014, 74: 16-23 CrossRef
  50. Frendo P., Gallesi D., Turnbull R., Van de Sype G., Hérouart D., Puppo A. Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J., 1999, 17: 215-219 CrossRef
  51. Innocenti G., Pucciariello C., Le Gleuher M., Hopkins J., de Stefano M., Del-ledonne M., Puppo A., Baudouin E., Frendo P. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta, 2007, 225: 1597-1602 CrossRef
  52. Loscos J., Matamoros M.A., Becana M. Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol., 2008, 146: 1282-1292 CrossRef
  53. Tsyganov V.E., Belimov A.A., Borisov A.Y., Safronova V.I., Georgi M., Dietz K.J., Tikhonovich I.A. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium. Ann. Bot., 2007, 99(2): 227-237 CrossRef
  54. Kulayeva O.A., Tsyganov V.E. Gene expression analysis of genes coding key enzymes of cadmium detoxification in garden pea symbiotic nodules. Rus. J. Genet.: Appl. Res., 2015, 5(5): 479-485 CrossRef
  55. Zhao F.Y., Hu F., Han M.M., Zhang S.Y., Liu W. Superoxide radical and auxin are implicated in redistribution of root growth and the expression of auxin and cell-cycle genes in cadmium-stressed rice. Russ. J. Plant Physiol., 2011, 58: 851-863 CrossRef
  56. Dalton D.A., Russell S.A., Hanus F.J., Pascoe G.A., Evans H.J. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. PNAS USA, 1986, 83: 3811-3815 CrossRef
  57. Smirnoff N. Ascorbic acid: metabolism and functions of a multi-faceted molecule. Curr. Opin. Plant Biol., 2000, 3: 229-235 CrossRef
  58. Potters G., Horemans N., Caubergs R.J., Asard H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol., 2000, 124: 17-20 CrossRef
  59. Arrigoni O., De Tullio M.C. Ascorbic acid: much more than just an antioxidant. Biochim. Biophys. Acta, 2002, 1569: 1-9 CrossRef
  60. De Tullio M.C., Arrigoni O. Hopes, disillusions and more hopes from vitamin C. Cell Mol. Life Sci., 2004, 61: 209-219 CrossRef
  61. Wheeler G.L., Jones M.A., Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393: 365-369 CrossRef
  62. Matamoros M.A., Loscos J., Coronado M.J., Ramos J., Sato S., Testillano P.S., Tabata S., Becana M. Biosynthesis of ascorbic acid in legume root nodules. Plant Physiol., 2006, 141: 1068-1077 CrossRef
  63. Pignocchi C., Foyer C.H. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol., 2003, 6: 379-389 CrossRef
  64. Pandey P., Singh J., Achary V., Reddy M.K. Redox homeostasis via gene families of ascorbate-glutathione pathway. Front. Environ. Sci., 2015, 3: 25 CrossRef
  65. Benedito V.A., Torres-Jerez I., Murray J.D., Andirankaja A., Allen S., Kakar K., Wandrey M., Verdier J., Zuber H., Ott T. A gene expression atlas of the model legume Medicago truncatula. Plant J., 2008, 55: 504-513 CrossRef
  66. Rahantaniaina M.S., Tuzet A., Mhamdi A., Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front. Plant Sci., 2013, 4: 477 CrossRef
  67. Meyer Y., Reichheld J.P., Vignois F. Thioredoxins in Arabidopsis and other plants. Photosynth. Res., 2005, 86: 419-433 CrossRef
  68. Ramos J., Matamoros M.A., Naya L., James E.K., Rouhier N., Sato S., Tabata S., Becana M. The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes. New Phytol., 2009, 181: 103-114 CrossRef
  69. Matamoros M.A., Saiz A., Peñuelas M., Bustos-Sanmamed P., Mulet J.M., Barja M.V., Rouhier N., Moore M., James E.K., Dietz K.J., Becana, M. Function of glutathione peroxidases in legume root nodules. J. Exp. Bot., 2015, 66(10): 2979-2990 CrossRef
  70. Groten K., Dutilleul C., van Heerden P.D.R., Vanacker H., Bernard S., Finkemeier I., Dietz K.-J., Foyer C.H. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett., 2006, 580: 1269-1276 CrossRef
  71. Alkhalfioui F., Renard M., Frendo P., Keichinger C., Myer Y., Gelhaye E., Hirasawa M., Knaff D.B., Ritzenhaler C., Montrichard F. A novel type of thioredoxin dedicated to symbiosis in legumes. Plant Physiol., 2008, 148: 424-435 CrossRef
  72. He J., Benedito V.A., Wang M., Murray J.D., Zhao P.X., Tang Y., Udvardi M.K. The Medicago truncatula gene expression atlas web server. BMC Bioinformatics, 2009, 10(1): 441-456 CrossRef
  73. Roux B., Rodde N., Jardinaud M.F., Timmers T., Sauviac L., Cottret L., Carrère S., Sallet E., Courcelle E., Moreau S., Debellé F. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J., 2014, 77(6): 817-837 CrossRef
  74. Lee M.-Y., Shin K.-H., Kim Y.-K., Suh J.-Y., Gu Y.-Y., Kim M.-R., Hur Y.-S., Son O., Kim J.-S., Song E. Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol., 2005, 139: 1881-1889 CrossRef
  75. Edwards E., Dixon D.P., Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci., 2000, 5: 193-198 CrossRef
  76. Dalton D.A., Boniface C., Turner Z., Lindahl A., Kim H.J., Jelinek L., Govindarajulu M., Finger R.E., Taylor C.G. Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol., 2009, 150: 521-530 CrossRef
  77. McGonigle B., Keeler S.J., Lau S.-M.C., Koeppe M.K., O’Keefe D.P. A genomics approach to the comprehensive analysis of glutathione S-transferase gene family in soybean and maize. Plant Physiol., 2000, 124: 1105-1120 CrossRef
  78. Rubio M.C., James E.K., Clemente M.R., Bucciarelli B., Fedorova M., Vance C.P., Becana M. Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol. Plant-Microbe Interact., 2004, 17: 1294-1305 CrossRef
  79. Wisniewski J.P., Rathbun E.A., Knox J.P., Brewin N.J. Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Mol. Plant-Microbe Interact., 2000, 13: 413-420 CrossRef
  80. Rubio M.C., Becana M., Sato S., James E.K., Tabata S., Spaink H.P. Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus. Mol. Plant-Microbe Interact., 2007, 20: 262-275 CrossRef
  81. Tejera N.A., Campos R., Sanjuán J., Lluch C. Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J. Plant Physiol., 2004, 161: 329-338 CrossRef
  82. Jebara S., Jebara M., Limam F., Aouani M.E. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J. Plant Physiol., 2005, 162: 929-936 CrossRef
  83. Furlan A.L., Bianucci E., del Carmen Tordable M., Castro S., Dietz K.J. Antioxidant enzyme activities and gene expression patterns in peanut nodules during a drought and rehydration cycle. Funct. Plant Biol., 2014, 41(7): 704-713 CrossRef
  84. Gogorcena Y., Iturbe-Ormaetxe I., Escuredo P.R., Becana M. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol., 1995, 108: 753-759 CrossRef 
  85. Porcel R., Barea J.M., Ruiz-Lozano J.M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol., 2003, 157: 135-143 CrossRef
  86. Scandalios J.G., Guan L., Polidoros A.N. Catalases in plants: gene structure, properties, regulation, and expression. In: Oxidative stress and the molecular biology of antioxidant defense. J.G. Scandalios (ed.). Cold Spring Harbor Press, NY: 343-406.
  87. Jamet A., Sigaud S., Van de Sype G., Puppo A., Hérouart D. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol. Plant-Microbe Interact., 2003, 16(3): 217-225 CrossRef
  88. De Lorenzo C., Lucas M.M., Vivo A., de Felipe M.R. Effect of nitrate on peroxisome ultrastructure and catalase activity in nodules of Lupinus albus L. cv. Multolupa. J. Exp. Bot., 1990, 41: 1573-1578 CrossRef
  89. Klapheck S. Homoglutathione: isolation, quantification and occurrence in legumes. Physiol. Plant., 1988, 74(4): 727-732 CrossRef
  90. Jiménez-Bremont J.F., Marina M., de la Luz Guerrero-González M., Rossi F.R., Sánchez-Rangel D., Rodríguez-Kessler M., Ruiz O.A., Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front. Plant. Sci., 2014, 5: 95 CrossRef
  91. Iturbe-Ormaetxe I., Matamoros M.A., Rubio M.C., Dalton D.A., Becana M. The antioxidants of legume nodule mitochondria. Mol. Plant-Microbe Interact., 2001, 14(10): 1189-1196 CrossRef

 

back