doi: 10.15389/agrobiology.2017.5.952eng

UDC 633.174:631.527.56:577.21

Acknowlegdgements:
The sequencing was carried out using equipment of the ARRIAM Center of Genomic Technologies, Proteomics and Cell Biology (St. Petersburg).
The authors thank A.G. Pinaev (ARRIAM, St. Petersburg) for assistance in DNA
sequencing

 

POLYMORPHISM OF GRAIN SORGHUM FROM VIR WORLD
COLLECTION FOR THE CHARACTERS ASSOCIATED WITH
THE CMS-Rf GENETIC SYSTEM

I.N. Anisimova1, D.N. Ryabova1, E.V. Malinovskaya2, N.V. Alpatieva1,
Yu.I. Karabitsina1, E.E. Radchenko1

1Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency of Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia,
e-mail irina_anisimova@inbox.ru (corresponding  author);
2Kuban Experiment Breeding Station, Branch of Federal Research Center the
N.I. Vavilov All-Russian Institute of Plant Genetic Resources,
Federal Agency of Scientific Organizations, 2, ul. Tsentral’naya, pos. Botanika, Gul’kevichskii Region, Krasnodarskii krai, 352183 Russia

ORCID:
Anisimova  I.N. orcid.org/0000-0003-0474-8860
Ryabova D.N. orcid.org/0000-0002-1729-0900
Malinovskaya E.V. orcid.org/0000-0002-0547-0760
Alpatieva N.V. orcid.org/0000-0002-5531-2728
Karabitsina Yu.I. orcid.org/0000-0002-8384-5134
Radchenko E.E. orcid.org/0000-0002-3019-0306

Received July 3, 2017

 

Seven different types of cytoplasmic male sterility (CMS) are known for the grain sorghum (Sorghum bicolor L. Moench), however, only A1 (milo) is used in heterotic hybrid breeding. The genetic control of pollen fertility restoration of CMS A1 is complex and determined by two or three Rf (Restoration of Fertility) genes, and also by a number of modifiers. It is very little known about molecular mechanisms of CMS A1 and fertility restoration. Only one gene, Rf1, is identified at the molecular level (R.R. Klein et al., 2005). In the present paper we have demonstrated for the first time the nucleotide polymorphism in the coding regions of the recessive and dominant alleles of Rf2 gene and also of the candidate RFL-PPR gene homologous to the rice Rf1 gene. . Here, we studied polymorphism of the CMS-Rf genetic system related traits in sorghum accessions from the VIR collection, including the fertility restorers k-928 and k-929; a half-restorer k-1362, the sterile lines A-10598 and A-83 (CMS A1) and their fertile analogs, the F8-F12 BC1-BC2 sister lines resistant to Schizaphis graminum Rond. which have been isolated among the hybrids derived from crosses between the sterile (CMS A1) line N-81 and lines k-929 and k-928, and also hybrids between the sister lines. For investigating variability of candidate genes associated with the CMS-Rf genetic system the reference sequences were selected from the bioinformatic database (http://www.ncbi.nlm.hih.gov), the eighth specific primers were designed, and the fragments amplified on the DNA of genotypes differing by the ability to suppression of the CMS phenotype were sequenced. In the CMS lines and fertility restorers a significant polymorphism (18 polymorphic sites) was revealed in the 825 bp fragment of the Rf2 coding region (reference fragment XM_002459403.1, chromosome SDI02) and also in RFL-PPR candidate gene located in the chromosome 3 (reference fragment XM_002458104.1). The sequenced regions of the structural nuclear gene ALDH2b encoding mitochondrial aldehyde dehydrogenase, the maize Rf2 gene homolog, and also of the mitochondrial F0F1 ATPase alpha subunit were identical in the CMS and fertility restorer lines. Variability of pollen fertility indices was studied using acetocarmine stained cytological preparations. The lines resistant to S. graminum, and their hybrids differed in the percentage of stained (fertile) pollen grains, the presence of anomalous large pollen grains (54-70 mm in diameter), giant pollen grains (up to 84 mm in diameter) and deformed pollen grains. In the fertile F8-F12 BC1-BC2 lines which derived from the hybrids produced in crossings with fertility restorers, the frequency of stained pollen grains was relatively high and reached 72.2-83.8 % for k-929, and 57.4 and 63.4 % in two lines, respectively, for k-928; large pollen grains occurred at different frequency in five lines, and the giant ones were observed in two lines. The variability in pollen fertility could be due to the differences in the alleles derived from the recurrent parent.

Keywords: Sorghum bicolor L. Moench, grain sorghum, CMS, fertility restoration, Rf, pollen fertility, candidate genes, nucleotide polymorphism.

 

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Ivanov M.K., Dymshits G.M. Cytoplasmic male sterility and restoration of pollen fertility in higher plants. Russian Journal of Genetics, 2007, 43(4): 354-368 CrossRef
  2. Chen L., Liu Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol., 2014, 65: 579-606 CrossRef
  3. Conner A.B., Karper R.E. Hybrid vigour in sorghum. Texas Agricultural Experiment Station Bulletin, 1927, 359: 21-26 (tsit. po B.V.S. Reddy et al., 2006).
  4. Reddy B.V.S., Sharma H.C., Thakur R.P., Ramesh S., Rattunde F., Mgonja M. Sorghum hybrid parents research at ICRISAT — strategies, status, and impacts. Journal of SAT Agricultural Research, 2006, 2: 1-24.
  5. Stephens J.C., Holland R.F. Cytoplasmic male sterility for hybrid sorghum seed production. Agron. J., 1954, 46: 20-23 CrossRef
  6. Pring D.R., Tang H.V., Schertz K.F. Cytoplasmic male sterility and organelle DNAs of sorghum. In: Molecular biology of plant mitochondria. C.S. Levings III, I.K. Vasil (eds.). Kluwer, Dordrecht, The Netherlands 1995.
  7. Elkonin L.A., Tsvetova M.I. Heritable effect of plant water availability conditions on restoration of male fertility in the 9E CMS-inducing cytoplasm of sorghum. Front. Plant Sci., 2012, 3: 91 CrossRef
  8. Elkonin L.A., Domanina I.V., Gerashchenkov G.A., Rozhnova N.A. Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E male-sterile cytoplasm induced by environmental conditions. Russian Journal of Genetics, 2015, 51(3): 251-261 CrossRef
  9. Kozhemyakin V.V., Elkonin L.A., Dahlberg J.A. Effect of drought stress on male fertility restoration in A3 CMS-inducing cytoplasm of sorghum. The Crop Journal, 2017, 5(4): 282-289 CrossRef
  10. Jordan D.R., Mace E.S., Henzell R.G., Klein P.E., Klein R.R. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet., 2010, 120(7): 1279-1287 CrossRef
  11. Klein R.R., Klein P.E., Mullet J.E., Minx P., Rooney W.L., Schertz K.F. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the collinear region of rice chromosome 12. Theor. Appl. Genet., 2005, 111(6): 994-1012 CrossRef
  12. Reddy P.S., Rao D.M., Reddy V.S.B., Kumar A.A. Inheritance of male-fertility restoration in A1, A2, A3 and A4(M) cytoplasmic male-sterility systems of sorghum [Sorghum bicolor (L.) Moench.]. Indian Journal of Genetics, 2010, 70(3): 240-246.
  13. Jordan D.R., Klein R.R., Sakrewski K.G., Henzell R.G., Klein P.E., Mace E.S. Mapping and characterization of Rf5 a new gene conditioning pollen fertility restoration in A1 and A2 cytoplasm in sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet., 2011, 123(3): 383-396 CrossRef
  14. Pring D.R., Tang H.V., Howad W., Kempken F. A unique two-gene gametophytic male sterility system in sorghum involving a possible role of RNA editing in fertility restoration. J. Hered., 1999, 90: 386-393 CrossRef
  15. Tang H.K., Pederson J.F., Chase C.D., Pring D.R. Fertility restoration of the sorghum A3 male-sterile cytoplasm through a sporophytic mechanism derived from sudangrass. Crop Science, 2007, 47: 943-950 CrossRef
  16. Hanson M.R., Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell, 2004, 16(Suppl. 1): 154-169 CrossRef
  17. O’Toole N., Hattori M., Andres C., Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I. On the expansion of the pentatricopeptide repeat gene family in plants. Mol. Biol. Evol., 2008, 25(6): 1120-1128 CrossRef
  18. Fujii S., Bond Ch.S., Small I.D. Selection patterns on restorer-like genes reveals a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. PNAS, 2011, 108(4): 1723-1728 CrossRef
  19. Dahan J., Mireau H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol., 2013, 10(9): 1469-1476 CrossRef
  20. Gaborieau L., Brown G.G., Mireau H. The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front. Plant Sci., 2016, 7: 1816 CrossRef
  21. Kaur P., Verma M., Chaduvula P.K., Saxena S., Baliyan N., Junaid A., Mahato A.K., Sing N.K., Gaikwad K. Insights into PPR gene family in Cajanus cajan and other legume species. Journal of Data Mining in Genomics and Proteomics, 2016, 7: 203 CrossRef
  22. Kibal'nik O.P. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 128-i godovshchine so dnya rozhdeniya akademika N.I. Vavilova [Proc. Int. Conf., dedicated to 128th Anniversary of N.I. Vavilov]. Saratov, 2015: 124-125 (in Russ.).
  23. Radchenko E.E., Malinovskaya E.V. Zashchita i karantin rastenii, 2012, 10: 24-25 (in Russ.).
  24. Radchenko E.E. Inheritance of greenbug resistance in several forms of grain sorghum and sudangrass. Russian Journal of Genetics, 2006, 42(1): 55-59 CrossRef
  25. Roskin G.I. Mikroskopicheskaya tekhnika [Microscopy techniques]. Moscow, 1951 (in Russ.).
  26. Anisimova I.N., Alpat'eva N.V., Timofeeva G.I. Skrining geneticheskikh resursov rastenii s ispol'zovaniem DNK-markerov: osnovnye printsipy, vydelenie DNK, postanovka PTSR, elektroforez v agaroznom gele. Metodicheskie ukazaniya VIR /Pod redaktsiei E.E. Radchenko [Screening plant genetic resources using DNA markers: basic principles, DNA isolation, PCR, agaros gel electrophoresis. E.E. Radchenko (ed.)]. St. Petersburg, 2010 (in Russ.).
  27. Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitros T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X., Wicker T., Bharti A.K., Chapman J., Feltus F.A., Gowik U., Grigoriev I.V., Lyons E., Maher C.A., Martis M., Narechania A., Otillar R.P., Penning B.W., Salamov A.A., Wang Y., Zhang L., Carpita N.C., Freeling M., Gingle A.R., Hash C.T., Keller B., Klein P., Kresovich S., McCann M.C., Ming R., Peterson D.G., Mehboob-ur-Rahman, Ware D., Westhoff P., Mayer K.F., Messing J., Rokhsar D.S. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556 CrossRef
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28: 2731-2739 CrossRef
  29. Desloire S., Gherbi H., Laloui W., Marhadour S., Clouet V., Cattolico L., Falentin L., Giancola S., Renard M., Budar F., Small I., Caboche M., Delourme R.M., Bendahmane A.Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep., 2003; 4(6): 588-594 CrossRef
  30. Cui X., Wise R.P., Schnable P.S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 1996, 272(5266): 1334-1336 CrossRef
  31. Liu F., Cui X., Horner H.T., Weiner H., Schnable P.S. Mitochondrial aldehyde dehydrogenase activity is required for male sterility in maize. The Plant Cell, 2001, 13: 1063-1078 CrossRef
  32. Jimenez-Lopez J.C., Gachomo E.W., Seufferheld M.J., Kotchoni S.O. The maize ALDH protein superfamily: linking structural features to functional specificities. BMC Struct. Biol., 2010, 10: 43 CrossRef
  33. Tsvetova M.I., Ishin A.G. Large pollen grains as indicators of increased ploidy level due to colchicines treatment. International Sorghum and Millets Newsletter, 1995, 36: 77.

 

back