doi: 10.15389/agrobiology.2015.5.550eng

UDC 633.11:631.52:575.167

RESERVES OF AGRO-TECHNOLOGIES AND BREEDING FOR CEREAL
YIELD INCREASING IN THE RUSSIAN FEDERATION

V.P. Yakushev, I.M. Mikhailenko, V.A. Dragavtsev

Agrophysical Research Institute, Federal Agency of Scientific Organizations,
14, Grazhdanskii prosp., St. Petersburg, 195220 Russia,
e-mail yakushev@agrophys.ru, ilya.mihailenko@yandex.ru, dravial@mail.ru

Received April 26, 2015

 

The authors consider new approaches to cereal yield increasing by relevant agro-techno-logies and breeding methods. Earlier it was shown that the yield of agrophytocenosis is determined by seven genetic and physiological systems, the GPS (A.B. Dyakov and V.A. Dragavtsev, 1994), the breeders are de facto faced to increase the crop yield. There was the first genotyping of each GPS of productivity which showed the ways to optimal strategy of yield management via GPS. In this paper for the first time it is shown that effect of some systems can be increased both by agro-technological and breeding methods. In the future the agro-technologies should be improved by the development of precise agriculture. In this, it is necessary to provide i) monitoring of phytocenoses, ii) indication of limiting factors for each stage of ontogenesis which impact the traits starting their development, iii) development of new agro-methods precisely influencing the phytocenosis by biologicals which can level the negative effects of specific limiting factors. In other words, «phase-specific agro-techno-logies» must be developed to protect sensitive phases of plant ontogenesis. To obtain maximal effect from precise breeding technologies, it is necessary to create mathematic models allowing to estimate quantitatively haw each GPS contributes to yield increasing at each stage of ontogenesis. Moreover, these models should be further used both in classical field breeding and, most effectively, in special phytotron where the dynamics of environment limiting factors typical for the territory of interest can be simulated. On the base of first created models the important quantitative algorithms for breeders were suggested which provide rapid identification of individual genotypes by their phenotypes and optimal selection of the parents to predict and obtain the transgressions (for self-pollinated plants). In this paper it is shown that, though certain GPSs can be improved both by agro-technologies and breeding, there are some traits which can be changed only by breeding. Analysis of unique breeding results of V.S. Pustovoyt, P.P. Lukyanenko and Norman E. Borlaug showed the GPSs improved by these great breeders and those ones unimproved. Breeding and agro-technology programs for each GPS must result in further yield increase. The paper summarizes the perspectiveness of hormones used during different phases of ontogenesis to deepen roots into soil, to increase attraction and to improve stress tolerance. Agro-technologies and breeding technologies must work together, because the high genetic potential of newly bred varieties can not be realized with improper agro-technology, and, in contrary, the best agro-technology will be limited by low potency of the variety. Modern agro-physical equipment (in particular, special phytotron accelerating breeding process), IT-techno-logies, mathematical modeling used to control crop yields are the main factors for optimal team-work of agro-technologists and breeders with the view of effective agriculture in Russia.

Keywords: agro-technologies, breeding, reserves of cereal yield increase in Russia.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. D'yakov A.B., Dragavtsev V.A. V sornike: Algoritmy ekologo-geneticheskoi inventarizatsii genofonda i metody konstruirovaniya sortov
    sel
    'skokhozyaistvennykh rastenii po urozhainosti, ustoichivosti i kachestvu
    (
    Metodicheski erekomendatsii) /Pod redaktsiei V.A. Dragavtseva [In: Algorithms for ecogenetic inventory of gene pool and crop design toward yield, tolerance and quality. V.A. Dragavtsev (ed.)]. St. Petersburg, 1994: 22-47.
  2. Chen D., Neumann K., Friedel S., Kilian B., Chen M., Altmann T. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell, 2014, 26: 4636-4655 CrossRef
  3. Fiorani F., Schurr U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol., 2013, 64: 267-291 CrossRef
  4. Iyer-Pascuzzi A.S., Symonova O., Mileyko Y., Hao Y., Belcher H., Har-
    er J., Weitz J.S., Benley P.N. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol., 2010, 152: 1148-1157 CrossRef
  5. Klukas C., Chen D., Pape J.M. Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol., 2014, 165: 506-518 CrossRef
  6. Chen Y., Libberstedt T. Molecular basis of trait correlations. Trends Plant Sci., 2010, 15: 454-461 CrossRef
  7. Otsenka sortov zernovykh kul'tur po adaptivnosti i drugim poligennym sistemam /Pod redaktsiei V.A. Dragavtseva [Estimation of cereal crops on adaptability and other polygenic systems. V.A. Dragavtsev (ed.)]. St. Petersburg, 2002.
  8. Otbor nositelei poligennykh sistem adaptivnosti i drugikh, kontroliruyushchikh produktivnost' ozimoi pshenitsy, yachmenya, ovsa, v razlichnykh regionakh Rossii /Pod redaktsiei V.A. Dragavtseva [Sampling plants possessing polygenic systems for adaptability and yield production in winter wheat, barley and oat from Russian different territories. V.A. Dragavtsev (ed.). St. Petersburg, 2005.
  9. Borojevic S. Can we develop varieties and races as we model them? Proc. XIV Int. Congr. ofGenetics. Moscow, 1978.
  10. Runov B., Pil'nikova N. Osnovy tekhnologii tochnogo zemledeliya [Basic precise agriculture]. St. Petersburg, 2012.
  11. Mikhailenko I.M. Ekologicheskie sistemy i pribory, 2011, 8: 17-25.
  12. Mikhailenko I.M. Ustroistvo dlya differentsirovannogo vneseniya zhidkikh yadokhimikatov. Patent RF 2415545 A01C 23/00. Agrofizicheskii institut. Zayavl. 10.05.2009. Opubl. 10.04.2011. Byul. № 5 [A device for differentiated application of liquid pesticides. Patent RF 2415545 A01C 23/00. Institute of Agrophysics. Appl. 10.05.2009. Published 10.04.2011. Bul. № 5].
  13. Kuznetsov V.V., Dmitrieva G.A. Fiziologiya rastenii [Plant physiology]. Moscow, 2011.
  14. Berger B., Parent B., Tester M. High-throughput shoot imaging to study drought responses. J. Exp. Bot., 2010, 61: 3519-3528 CrossRef
  15. Novikov A.V. Izmenenie uborochnogo indeksa v protsesse selektsii i ego vliyanie na urozhainost' pshenitsy myagkoi ozimoi. Avtoreferat kandidatskoi dissertatsii [Changes in yield index due to selection and its influence on the winter wheat yield. PhD Thesis]. Krasnodar, 2012.
  16. Zasukhi v SSSR, ikh proiskhozhdenie, povtoryaemost', vliyanie na urozhai [Droughts in the USSR territory: origin, periodicity, and an impact on crop yields]. Leningrad, 1958.
  17. Sellammal R., Robin S., Raveendran M.  Association and heritability studies for drought resistance under varied moisture stress regimes in backcross inbred population of rice. Rice Sci., 2014, 21: 150-161 CrossRef
  18. Dragavtsev V.A., D'yakov A.B. Teoriya selektsionnoi identifikatsii genotipov rastenii po fenotipam na rannikh etapakh selektsii. Fenetika populyatsii [Theory of genotype identification through phenotype at early steps of breeding. Population phenetics]. Moscow, 1982: 30-37.
  19. Bespalova L.A., Kolesnikov F.A., Puchkov Yu.M., Timofeev V.B., Fomenko N.P., Kudryashov I.N., Kostin V.V., Nabokov G.D. V sbornike: Pshenitsaitritikale: materialynauchno-prakticheskoikonferentsii «“Zelenayarevolyutsiya
    P.P. Luk'yanenko» [In: Wheat and triticale: Proc. Conf. «Green revolution of P.P. Luk’ya-nenko». Krasnodar, 2001: 13-27.
  20. Mikhailenko I.M., Dragavtsev V.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 3: 26-35.
  21. Mikhailenko I.M., Dragavtsev V.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 1: 26-34 CrossRef, CrossRef
  22. Mikhailenko I.M., Dragavtsev V.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 1: 35-41 CrossRef, CrossRef
  23. Kocherina N.V., Dragavtsev V.A. Vvedenie v teoriyu ekologo-geneticheskoi organizatsii poligennykh priznakov i teoriyu selektsionnykh indeksov [Introduction to eco-genetic theory of polygenic traits’ control and the theory of selection indexes]. St. Petersburg, 2008.
  24. Dragavtsev V.A. Biosfera, 2012, 4(3): 251-262.
  25. Dragavtsev V.A. Biosfera, 2013, 5(3): 279-290.
  26. Dragavtsev V.A., Tsil'ke R.A., Reiter B.G., Vorob'ev V.A., Dubrov-
    skaya A.G., Korobeinikov N.I., Novokhatin V.V., Maksimenko V.P., Babakishiev A.G., Ilyushchenko V.G., Kalashnik N.A., Zuikov Yu.P., Fedotov A.M. Genetika priznakov produktivnosti yarovykh pshenits v Zapadnoi Sibiri [Genetic control of spring wheat yield traits in West Siberia]. Novosibirsk, 1984: 196-199.
  27. Kurtener D.A., Komarov A.A., Krueger E.D., Lavrikov M.Yu., Nayda N.M. Fuzzy multi-attributive analyses of organic-mineral fertilizer Stimulayf and Humate Sodium: application for cultivation of Dracocephalum L. European Agrophysical Journal, 2014, 1(1): 14-24.
  28. Arkhipov M.V., Priyatkin N.S., Krueger D.A., Bondarenko A.S. Seed assessment using fuzzy logic and gas discharge visualization data. European Agrophysical Journal, 2014, 1(4): 124-133.
  29. Tsegaye B., Berg T. Genetic erosion of ethiopian tetraploid wheat landraces in Eastern Sheva, Central Ethiopia. Gen. Res. Crop Evol., 2007, 54: 715-726 CrossRef
  30. Cabrera J., Perron-Welch F., Rukundo O. Overview of national and regional measures on access to genetic resources and benefit-sharing: challenges and opportunities in implementing the Nagoya Protocol (first edition). Montreal, Centre for International Sustainable Development Law, 2011.
  31. Kurtener D.A., Yakushev V.P. Utilization of fuzzy computing in agrophysics (review). European Agrophysical Journal, 2014, 1(2): 63-78.
  32. Torbert H.A., Ingra J.T., Prior S.A. High residue conservation tillage system for cotton production: a farmer’s perspective. European Agrophysical Journal, 2015, 2(1): 1-14.
  33. Esquinas-Alcazar J., Hilmi A., Lopez-Noriega I. A brief history of the negotiations of the International treaty on plant genetic resources for food and agriculture. In: Crop genetic resources as a global commons: challenges in international governance and low /M. Ha-lewood, I.L. Noriega, S. Louafi (eds.). London, Earthscan, 2013.
  34. Nartov V.P., Dragavtsev V.A. Application of thermal imaging in agriculture and forestry. European Agrophysical Journal, 2015, 2(1): 15-20.
  35. Plant genetic recourses and food security: stakeholder perspectives on the International treaty on plant genetic resources for food and agriculture /E. Frison, F. Lopez, J.T. Esquinas-Alcazar (eds.). London-NY, 2011.

back