doi: 10.15389/agrobiology.2015.5.611eng

UDC 633.12:581.1:581.19
Supported in part by Russian Foundation for Basic Research, grant № 14-04-01742

FEATURES OF THE PHENOLICS’ FORMATION IN SEEDLINGS OF DIFFERENT VARIETIES OF BUCKWHEAT (Fagopyrum esculentum  Moench)

V.V. Kazantseva1, E.A. Goncharuk1, A.N. Fesenko2, A.V. Shirokova3,
N.V. Zagoskina1

1K.A. Timiryazev Institute of Plant Physiology RAS, Federal Agency of Scientific Organizations,
35, ul. Botanicheskaya, Moscow, 127276 Russia,
e-mail phenolic2012@yandex.ru;
2All-RussianResearch Institute of Legumes and Groat Crops,Federal Agency of Scientific Organizations,
10, korp. 1, ul. Molodezhnaya, pos. Streletskii, Orel Region, Orel Province, 302502 Russia, e-mail fesenko.a.n@rambler.ru;
3N.K. Kol’tsovInstituteof Developmental Biology RAS, Federal Agency of Scientific Organizations,
26, ul. Vavilova, Moscow, 119334 Russia,
e-mail glandularia@yahoo.com

Received April 14, 2015

 

An unique feature of higher plants is the capacity to form phenolic compounds, the substances with high antioxidant activity. These secondary metabolites play an important functional role, including cell and tissue protection against stress factors. It is especially important at the initial stages of plant ontogenesis. Buckwheat (Fagopyrum esculentum Moench) is the major cereal crop for which the formation of various phenolics, particularly rutin, a biologically active compound of plant origin successfully used in pharmacology, is characteristic. In the young seedlings (at the age of 14 days) of 10 buckwheat varieties mostly bred in Russian research centers during recent decades we studied the morphophysiological parameters and the accumulation of phenolic compounds, including phenylpropanoids and flavonoids, in the hypocotyls and cotyledons. Particularly, the highest level of phenylpropanoids was found in Bol’shevik 4 and Bashkirskaya krasnostebel’naya varieties. Note, it was high and almost equal in the hypocotyls and cotyledons. In the rest varieties the amount of phenylpropanoids in seedlings was 20 to 50 % lower, and in the cotyledons it was 1.5-2.0 times higher compared with the hypocotyls. Accumulation of flavonoids was higher in the Dialog variety, somewhat lower in Bol’shevik 4 and Bashkirskaya krasnostebel’naya varieties (by 10 and 17 %, respectively), and 35 to 40 % lower in the other studied forms. The highest content of anthocyanins was shown in the Bashkirskaya krasnostebel’naya plants, while in other studied buckwheat varieties it was lower. Particularly, in Devyatka, Bol’shevik 4 and Temp plants a decrease was about 50 %, and in Batyr, Dialog, Chatyr tau, Ilishevskaya, Dizain, and Dikul’ varieties 70 to 80 % decrease was found. It was shown that recently bred buckwheat varieties have a very rapid growth and development of seedlings, which is important for their better adaptation in the early ontogeny. The most promising varieties, along with Bashkir krasnostebelnaya, are Bolshevik 4, Nine, Dialogue and Tempo. They are characterized by a high capacity for accumulation the phenolic compounds, the important components of the antioxidant defense system in plants. This feature of their metabolism may be a potential criterion for plant resistance to stress factors

Keywords: buckwheat, Fagopyrum esculentum Moench, varieties, phenolic compounds, phenylpropanoids, flavonoids, anthocyanins.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Kurkin V.A. Farmakognoziya [Pharmacognosia]. Samara, 2007 (http://www.twirpx.com/fi-le/1224778/).
  2. Zotikov V.I., Naumkina T.S., Sidorenko V.S. Vestnik OrelGAU, 2010, 4(25): 18-23 (http://ej.orelsau.ru/index.html).
  3. Brunori A., Baviello G., Kolonna M., Rissi M., Izzi G., Totkh M., Vegvari G. Vestnik OrelGAU, 2010, 4(25), 23-30 (http://ej.orelsau.ru/index.html).
  4. Klykov A.G. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 3: 49-53 (http://www.agrobiology.ru/3-2010klikov.html).
  5. Sun T., Ho C. T. Antioxidant activities of buckwheat extracts. Food Chem., 2005, 90: 743-749 CrossRef
  6. Fesenko N.V. Selektsiya i semenovodstvo grechikhi [Breeding and seed production in buckwheat]. Moscow, 1983.
  7. Martynenko G.E., Fesenko N.V., Fesenko A.N., Shipulin O.A. Zernovoe khozyaistvo Rossii, 2010, 5(11): 9-16 (http://zhros.ru/num11(5)_2010/pdf/zhr_5-2010.pdf).
  8. Sabitov A.M., Magafurova E.F., Khusnutdinov V.V. Dostizheniya nauki i tekhniki APK, 2010, 3: 20-22 (http://agroapk.ru/).
  9. Anisimova M.M., Kurkin V.A., Ezhkov V.N. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2010, 12: 2011-2014 (http://www.ssc.smr.ru/media/jour-nals/izvestia/2010/2010_1_2011_2014.pdf).
  10. Zaprometov M.N. Fenol'nye soedineniya: Rasprostranenie, metabolizm i funktsii v rasteniyakh [Plant phenolics: occurance, metabolism and functions]. Moscow, 1993.
  11. Cheynier V., Comte G., Davis K.M., Lattanzio V., Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 2013, 72: 1-20 CrossRef
  12. Lattanzio V., Kroon P.A., Quideau S., Treutter D. Plant phenolics — secondary metabolites with diverse functions. In: Recent advances in polyphenol research /F. Daayf, V. Lattanzio (eds.). Oxford, UK, Wiley-Blackwell, 2008, V. 1: 1-35.
  13. Chacon I., Riley-Saldana Ch., Gonzalez A. Secondary metabolites during early development in plants. Phytochem. Rev., 2013, 12: 47-64 CrossRef
  14. Lattanzio V., Cardinali A., Ruta C., Fortunato I.M., Lattanzio M.T., Vito L., Cicco N. Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Env. Exp. Botany, 2009, 65: 54-62 CrossRef
  15. Zhang L., Ravipati A.S., Koyyalamudi S.R., Jeong S.C., Reddy N., Smith P.T., Bartlett J., Shanmugam K., Munch G., Wu M.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J. Agric. Food Chem., 2011, 59: 12361-12367 CrossRef
  16. Tarakhovskii Yu.S., Kim Yu.A., Abdrasilov B.S., Muzafarov E.N. Flavonoidy: biokhimiya, biofizika, meditsina [Flavonoids: biochemistry, biophysics, medicine]. Pushchino, 2013 (http://biophenols.ru/wp/wp-content/uploads/2013/11/Tarahovsky.pdf).
  17. Li S., Li S.-K., Gan R.-Y., Song F.-L., Kuang L., Li H.-B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Industrial Crops and Products, 2013, 51: 289-298 CrossRef
  18. Zaprometov M.N. V sbornike: Biokhimicheskie metody v fiziologii rastenii [In: Biochemical methods in plant physiology]. Moscow, 1971: 185-197.
  19. Gage T.B., Wendei S.H. Quantitative determination of certain flavonol-3-glycosides. Anal. Chem., 1950, 22: 708-711.
  20. Kurkin V.A., Vel'myaikina E.I. Farmatsiya, 2011, 7: 10-12 (http://www.rusvr-ach.ru/pharm/archive/2465-qq-6-2011.html).
  21. Murav'eva D.A., Bubenchikova V.N., Belikov V.V. Farmakologiya, 1987, 36: 28-29.
  22. Polekhina N.N., Pavlovskaya N.E. Fundamental'nye issledovaniya, 2013, 10: 357-361 (http://www.rae.ru/fs/505-c32283).
  23. Meichik N.R., Balnokin Yu.V. Voda v zhizni rastenii. V sbornike: Fiziologiya rastenii /Pod redaktsiei I.P. Ermakova [In: Plant physiology. I.P. Ermakov (ed.)]. Moscow, 2005: 588-619.
  24. Pugachev G.N. Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta, 2011, 1(1): 125-131.
  25. Kudoyarova G.R., Veselov D.S., Faizov R.G., Veselova S.V., Ivanov E.A., Farkhutdinov R.G. Fiziologiya rastenii, 2007, 54: 54-58.
  26. Zagoskina N.V., Olenichenko N.A., Chzhou Yun'vei, Zhivukhi-
    na E.A. Prikladnaya biokhimiya i mikrobiologiya, 2005, 41: 113-116 (http://www.in-bi.ras.ru/pbm/v41/41_n1_annotation.html).
  27. Zaprometov M.N., Nikolaeva T.N. Fiziologiya rastenii, 2003, 50: 699-702.
  28. Bidel L.P.R., Coumans M., Baissac Y. Biological activity of phenolics in plant cells. In: Recent advances in rolyphenol research /C. Cantos-Buelga, M.T. Escribano-Bailon, V. Lattanzio (eds.). Iowa, USA, Wiley-Blackwell, 2010, V. 2: 163-205.

back