БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2023.3.473rus

УДК 634.11+58.084.5

Исследование выполнено при финансовой поддержке Российской Федерации (соглашение с Министерством науки и высшего образования Российской Федерации № 075-15-2022-321)

 

СПЕКТРАЛЬНЫЕ ВЕГЕТАЦИОННЫЕ ИНДЕКСЫ КАК ИНДИКАТОРЫ СОДЕРЖАНИЯ ПИГМЕНТОВ В ЛИСТЬЯХ ЯБЛОНИ (Malus domestica Borkh.)

И.Ю. САВИН1, 2 , С.Н. КОНОВАЛОВ3, В.В. БОБКОВА3,
Д.В. ШАРЫЧЕВ1

Методы оперативного дистанционного (спутникового и беспилотного) сельскохозяйственного мониторинга в настоящее время базируются на использовании спектральных вегетационных индексов в качестве интегральных показателей состояния растений. В 1972 году для дистанционного мониторинга растительности был предложен первый спектральный вегетационный индекс NDVI (normalized difference vegetation index), а в последующие годы разработано около сотни индексов, предназначенных для детектирования разных свойств: от влажности, структуры листьев, архитектуры растений в посевах до содержания различных веществ, в том числе пигментов, регулирующих фотосинтез и продуктивность растений. Во многих случаях предлагаемые индексы надежно функционируют для конкретных растений или для растительности в целом. Для плодовых культур, в частности для яблони, подобных индексов практически нет. В представленной статье впервые показано, что спектральные вегетационные индексы, предложенные для детектирования пигментов в сельскохозяйственных растениях, нуждаются в уточнении при их использовании для подобного детектирования пигментов в листьях яблони конкретного сорта. Нашей целью был анализ связи между спектральными вегетационными индексами, рассчитанными для листьев яблони сорта Имрус, с содержанием в них хлорофилла и каротиноидов. Анализ спектральной отражательной способности листьев яблони (Malus domestica Borkh.) сорта Имрус посадки 2011 года проводили 19 октября 2021 года на территории опытного сада ФГБНУ ФНЦ садоводства (пос. Михнево, Московская обл., Ступинский р-н). Листья собирали в полуденное время случайным образом из средней части кроны с ветвей 2-5-летнего возраста. Всего для анализа содержания пигментов сформировали 26 смешанных образцов листьев. Содержание хлорофиллов a + b определяли в лабораторных условиях методом Винтерманса-Де Мотса, каротиноидов — методом фон Ветштейна. Спектральную отражательную способность оценивали с использованием полевого спектрорадиометра SR-6500 («Spectral Evolution», США), который работает в диапазоне 350-2500 нм с разрешающей способностью 1. Кривые спектральной отражательной способности получали в 5-кратной повторности для верхней поверхности листьев, осредняли для каждого листа, а затем для каждой из 26 смешанных групп листьев. На основании осредненных кривых спектрального отражения вычисляли наиболее распространенные спектральные вегетационные индексы. После этого был проведен анализ связи величин спектральных вегетационных индексов с содержанием пигментов в листьях. Установлено, что предложенные ранее многочисленные вегетационные индексы не могут быть использованы для бесконтактного детектирования содержания хлорофилла и каротиноидов в листьях яблони сорта Имрус. Связь между величиной индекса и содержанием пигмента практически отсутствует. Также не удается сгруппировать проанализированные листья по содержанию пигментов на основе построения дендрограммы сходства между кривыми спектрального отражения листьев в диапазоне 350-2500 нм. На основе корректировки индексов, показавших наиболее точную зависимость, предложены новые вегетационные индексы для бесконтактного детектирования содержания в листьях яблони каротиноидов и хлорофилла, которые позволяют получать регрессионные модели с R2 выше 0,65. Перед широким использованием их необходимо протестировать для листьев яблони других сортов, а также для листьев, находящихся в разной стадии развития.

Ключевые слова: спектральная отражательная способность, Malus domestica, листья яблони, хлорофилл, каротиноиды, вегетационные индексы.

 

 

SPECTRAL VEGETATION INDEXES AS INDICATORS OF LEAF PIGMENT CONTENT IN APPLE (Malus domestica Borkh.)

I.Yu. Savin1, 2 , S.N. Konovalov3, V.V. Bobkova3, D.V. Sharychev1

Methods of operational remote (satellite and unmanned) agricultural monitoring are currently based on the use of spectral vegetation indices as some integral indicators of plant condition. Since the first of them (Normalized Difference Vegetation Index — NDVI) appeared in the early 1970’s, rich experience has been accumulated in their use to detect various properties of agricultural plants and agrophytocenoses as a whole. About a hundred different indices have been proposed to detect different properties, e.g., moisture, leaf structure, architecture of plants in crops, the content of various substances, including pigments regulating photosynthesis and plant productivity. In many cases, the proposed indices function reliably for specific plants or for the vegetation as a whole. For fruit crops and, in particular, for apple-tree, there are practically no such indices. In this paper, it is shown for the first time that the spectral vegetation indices proposed for the detection of pigments in agricultural plants need to be refined when they are used for similar detection of pigments in the leaves of an apple tree of a particular variety. Our goal was to analyze the relationship between the spectral vegetation indices calculated for the leaves of the Imrus apple tree (Malus domestica Borkh.) with the leaf content of chlorophyll and carotenoids. We evaluated the applicability of several dozen vegetation indices proposed for determining the content of chlorophylls and carotenoids in the leaves of various plants to the non-contact determination of these pigments in the leaves of the Imrus apple tree. On October 19, 2021, leaves were collected at noon randomly from 2-5-year old branches of the middle part of the crown of model Imrus trees grown from 2011 at the test plot (Stupino District, Moscow Province, Russia). In total, 26 mixed leaf samples were collected for pigment content analysis. The content of chlorophylls a + b was determined in the laboratory by the Wintermans-De Mots method, carotenoids by the von Wetshtein method. For the same leaves, spectral reflectance was measured under field conditions using a SR-6500 field spectroradiometer (Spectral Evolution, USA), which operates in the 350-2500 nm range with a resolution of 1 nm. Spectral reflectivity curves were plotted in 5 replicates for the upper surface of the leaves, averaged for each leaf, and then for each of the 26 mixed groups of leaves. Based on the averaged spectral reflectance curves, the most common spectral vegetation indices were calculated, followed by an analysis of the relationship between the values of the spectral vegetation indices and the content of pigments in the leaves. It has been established that the previously proposed numerous vegetation indices cannot be used for non-contact detection of the content of chlorophyll and carotenoids in the leaves of the Imrus apple tree. There is practically no connection between the index value and pigment content. It is also not possible to group the analyzed leaves according to the content of pigments based on the construction of a dendrogram of the similarity between the spectral reflectance curves of leaves in the range of 350-2500 nm. Based on the correction of the indices that showed the most accurate dependence, new vegetation indices were proposed for non-contact detection of the content of carotenoids and chlorophyll in apple leaves, which make it possible to obtain regression models with R2 above 0.65. Before widespread use, they must be tested for leaves of apple trees of other varieties, as well as for leaves at different stages of development.

Keywords: spectral reflectance, Malus domestica, apple leaves, chlorophyll content, carotenoids content, vegetation indexes.

 

1ФГБНУ ФИЦ Почвенный институт им. В.В. Докучаева,
119017 Россия, г. Москва, Пыжевский пер., 7, стр. 2,
e-mail: savin_iyu@esoil.ru ✉, sharychev_dv@esoil.ru;
2Институт экологии, ФГАОУ ВО Российский университет дружбы народов,
117198 Россия, г. Москва, ул. Миклухо-Маклая, 8, к. 2;
3ФГБНУ Федеральный научный селекционно-технологический центр садоводства
и питомниководства,

115598 Россия, г. Москва, Загорьевская ул., 4,
e-mail: vstisp.agrochem@yandex.ru

Поступила в редакцию
31 января 2023 года

 

назад в начало

 


СОДЕРЖАНИЕ

 

Полный текст PDF

Полный текст HTML