doi: 10.15389/agrobiology.2017.1.50eng

UDC 635.21:631.527.7:571.21



A.P. Yermishin, E.V. Voronkova

Institute of Genetic and Cytology of National Academy of Science of Belarus, 27, ul. Akademicheskaya, Minsk, 220072 Republic of Belarus,

Yermishin A.P.

Received November 9, 2016


It is important for improving the efficacy of potato breeding to have parental lines that are multiplex for many genes of agronomic characters, first of all genes of resistance to pests and diseases (that have two or more dominant alleles in the locus) (J.E. Bradshaw et al., 1994). Parental lines that are multiplex for several resistance genes occur not often (A.P. Yermishin et al., 2016) and, owing to biological peculiarities of potato crop, they can be produced only by means of breeding at the diploid level. In the presented review the genetic principles are described and an experience of their use by authors in research devoted to the development of the initial material applicable for effective marker assisted potato parental line breeding at the diploid level. The material includes the collection of initial dihaploids originated from potato varieties which were selected for viability, tuber performance, cultivar characters and DNA-markers of pest and diseases resistance genes; the diploid breeding material having wide range of late blight and virus resistance genes, introgressed from wild potato species by means of original methods of overcoming interspecific reproductive barriers; the diploid lines — donors of self-incompatibility gene and high male fertility genes that are effective as in heterozygous as well as in homozygous condition; the diploid lines — donors of genes of male fertile FDR (first division restitution) 2n-gamete formation. The best diploid lines having a complex of pest and diseases resistance genes, selected as the result of diploid breeding (on the basis of initial dihaploids, interspecific hybrids and donors of fertility) were used for production of multiplex tetraploid parental lines by means of mitotic chromosome doubling. Diploid parental lines suitable for hybridization with potato varieties (for meiotic polyploidization) were bred using lines-donors of genes of male fertile FDR 2n-gamete formation. The diploid initial material developed as the result of the research is of the interest for prospective alternative directions of potato breeding using selection at the diploid level: breeding diploid potato varieties as well as parental lines for production of hybrids and hybrid populations for true potato seed technology.

Keywords: potato, breeding at the diploid level, marker-assisted selection (MAS), multiplex parental lines, male fertility, unreduced gametes.


Full article (Rus)

Full text (Eng)



  1. Bradshaw J.E., Mackay G.R. Breeding strategies for clonally propagated potatoes. In: Potato genetics. J.E. Bradshaw, G.R. Mackay (eds.). CABI, Wallingford (UK), 1994: 109-132.
  2. Ermishin A.P., Svitoch O.V., Voronkova E.V., Gukasyan O.N., Luksha V.I. Genetika, 2016, 5: 569-578 CrossRef (in Russ.).
  3. Ortiz R., Peloquin S.J., Freyre R., Iwanaga M. Efficiency of potato breeding using FDR 2n gametes for multitrait selection and progeny testing. Theor. Appl. Genet., 1991, 82(5): 602-608 CrossRef
  4. Montelongo-Escobedo H., Rowe P.R. Haploid induction in potato: sytological basis for the pollinator effect. Euphytica, 1969, 18: 116-123 CrossRef
  5. Clulow S.A., Wilkinson M.J., Waugh R., Baird E., De Maine M.J., Powell W. Cytological and molecular observations on Solanum phureja-induced dihaploid potatoes. Theor. Appl. Genet., 1991, 82: 545-551 CrossRef
  6. Hermsen J.G.Th., Verdenius J. Selection from Solanum tuberosum group Phureja of genotypes combining high frequency haploid induction with homozygosity for embryo-spot. Euphytica, 1973, 22: 244-259 CrossRef
  7. Voronkova E.V., Luksha V.I., Gukasyan O.N., Savchuk A.V., Ermishin A.P. Kartofelevodstvo (Minsk), 2011, 19: 215-226 (in Russ.).
  8. Jansky S.H., Peloquin S.J., Yerk G.L. Use of potato haploids to put 2× wild species germplasm in usable form. Plant Breeding, 1990, 104: 290-294 (doi: CrossRef
  9. Ermishin A.P., Makhan'ko O.V., Voronkova E.V. Genetika, 2006, 42(12): 1674-1682 CrossRef (in Russ.).
  10. Ermishin A.P., Makhan'ko O.V., Voronkova E.V. Genetika, 2008, 44(5): 645-653 CrossRef
  11. Ermishin A.P. Izvestiya NAN Belarusi, ser. biol. nauk, 2001, 3: 105-118 (in Russ.).
  12. Polyukhovich Yu.V., Makhan'ko O.V., Savchuk A.V., Voronkova E.V., Ermishin A.P. Izvestiya NAN Belarusi, ser. biol. nauk, 2010, 2: 51-58 (in Russ.).
  13. Yermishin A.P., Polyukhovich Y.V., Voronkova E.V., Savchuk A.V. Production of hybrids between 2 EBN bridge species Solanum verrucosum and 1 EBN diploid potato species. Amer. J. Potato Res., 2014, 91: 610-617 CrossRef
  14. Polyukhovich Yu.V., Voronkova E.V., Savchuk A.V., Ermishin A.P. Kartofelevodstvo (Minsk), 2013, 21(1): 136-145 (in Russ.).
  15. Voronkova E.V., Lisovskaya V.M., Ermishin A.P. Genetika, 2007, 43(8): 1065-1073 CrossRef (in Russ.).
  16. Ermishin A.P. Izvestiya NAN Belarusi, ser. biol. nauk, 2014, 1: 23-31 (in Russ.).
  17. Voronkova E.V., Lisovskaya V.M., Pavlyuchuk N.V., Savchuk A.V., Ermi-
    shin A.P. Kartofelevodstvo (Minsk), 2008, 14: 144-152 (in Russ.).
  18. Voronkova E.V., Polyukhovich Yu.V., Savchuk A.V., Gukasyan O.N., Ermi-
    shin A.P. Molekulyarnaya i prikladnaya genetika (Minsk), 2013, 15: 104-110 (in Russ.).
  19. Yeh B.P., Peloquin S.J., Hougas R.W. Meiosis in Solanum tuberosum haploids and haploid-haploid F1 hybrids. Can. J. Genet. Cytol., 1964, 6: 393-402 CrossRef
  20. Carroll C.P., Low R.J. Flowering behavior and seed fertility in dihaploid Solanum tuberosum. Potato Res., 1975, 18: 416-427 CrossRef
  21. Trognitz B.R. Female fertility of potato (Solanum tuberosum ssp. tuberosum) dihaploids. Euphytica, 1995, 81(1): 27-33 CrossRef
  22. Carroll C.P., Low R.J. Aspects of male fertility in group Tuberosum dihaploids. Potato Res., 1976, 19: 109-121.
  23. Trognitz B. R. Comparison of different pollen viability assays to evaluate pollen fertility of potato dihaploids. Euphytica, 1991, 56(2): 143-148 CrossRef
  24. Pallais N., Fong N., Berrios D. Research on the physiology of potato sexual seed production. Proc. Int. Conf.  «Innovative methods for propagating potatoes». CIP Rep. 28th Planning Conf. Lima, CIP, 1984: 149-168.
  25. M'Ribu H.K., Veilleux R.E. Fertility of doubled monoploids of Solanum phureja. Am. PotatoJ., 1992, 69(7): 447-459 CrossRef
  26. Ermishin A.P., Voronkova E.V. Izvestiya NAN Belarusi, ser. biol. nauk, 1998, 3: 45-52 (in Russ.).
  27. Grun P. Evolution of the cultivated potato: a cytoplasmic analysis. In: The biology and taxonomy of the Solanaceae. Linnean Soc. Symp. Ser. № 7. Acad. Press, London, 1979: 655-665.
  28. Sanetomo R., Gebhardt C. Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biol., 2015, 15: 162-178 CrossRef
  29. Cipar M.S., Peloquin S.J., Hougas R.W. Haploidy and the identification of self-incompatibility alleles in cultivated diploid species. Can. J. Genet. Cytol., 1967, 9: 511-518 CrossRef
  30. Anoshenko B.Yu. Prediction of compatibility between diploid potato varieties. Abstr. of 13th Triennial EAPR Conf. Wageningen, NL, 1996: 518-519.
  31. Olsder J., Hermsen J.G.Th. Genetics of self-compatibility in dihaploids of Solanum tuberosum L. 1. Breeding behavior of two self-compatible dihaploids. Euphytica, 1976, 25(3): 597-607 CrossRef
  32. Cipar M.S., Peloquin S.J., Hougas R.W.Variability in the expression of self-incompatibility in tuber-bearing diploid Solanum species. Am. Potato J., 1964, 41: 155-162 CrossRef
  33. Hosaka K., Hanneman R.E., Jr. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica, 1998, 99: 191-197 CrossRef
  34. Lindhout P., Meijer D., Schtte T., Hutten R., Visser R., van Eck H. Towards F1 hybrid seed potato breeding. Potato Res., 2011, 54: 301-312 CrossRef
  35. Yermishin A.P. The development of initial parental material for breeding disease resistant potatoes at the diploid level. Plant Breeding and Seed Science, 2000, 44: 105-115.
  36. Luksha V.I., Savchuk A.V., Voronkova E.V., Ermishin A.P. Kartofelevodstvo (Minsk), 2010, 17: 137-148 (in Russ.).
  37. Ramanna M.S. A re-examination of the mechanisms of 2n-gamete formation in potato and its implications for breeding. Euphytica, 1979, 28: 537-561 CrossRef
  38. Mok D.W.S., Peloquin S.J. The inheritance of three mechanisms of diplandroid (2n pollen) formation in diploid potatoes. Heredity, 1975, 35: 295-302 CrossRef
  39. Podlisskikh V.E., Ankudo T.M., Anoshenko B.Yu. Tsitologiya, 2002, 44: 996-1003 (in Russ.).
  40. Hermsen J.G.Th. Mechanisms and genetic implications of 2n-gamete formation. Iowa State J. Research, 1984, 58: 421-434.
  41. Bani-Aameur F., Laurer F.I., Veilleux R.E. Frequency of 2n pollen in diploid hybrids between Solanum phureja and Solanum chacoense. Potato Res., 1992, 35: 161-172 CrossRef
  42. Jacobsen E. Diplandroid formation and its importance for the seed set in 4½ ½ 2½ crosses in potato. Z. Pflanzenzuchtg, 1980, 84: 240-249.
  43. Ortiz R., Peloquin S.J. Recurrent selection for 2n gamete production in 2½ potatoes. J. Genet. Breed., 1992, 46: 383-390.
  44. Mooney J., Peloquin S.J. Phenotypic recurrent selection for 2n pollen frequency. Am. Potato J., 1992, 69: 599.
  45. Ermishin A.P. Molekulyarnaya i prikladnaya genetika (Minsk), 2013, 15: 39-47 (in Russ.).
  46. Galek R., Rurek M., De Jong W., Pietkievicz G., Augustyniak H., Sawicka-Sienkiewicz E. Application of DNA markers linked to the potato H1 gene conferring resistance to pathotype Ro1 of Globodera rostochiensis. J. Appl. Genet., 2011, 52: 407-411 CrossRef
  47. Gebhardt C., Bellin D., Henselewski H., Lehmann W., Schwarzfischer J., Valkonen J.P. Marker-assisted combination of major genes for pathogen resistance in potato. Theor. Appl. Genet., 2006, 112: 1458-1464 CrossRef
  48. Kasai K., Morikawa Y., Sorri V.A., Valkonen J.P., Gebhardt C., Watanabe K.N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000, 43: 1-8 CrossRef
  49. Almekinders C.J.M., Chujoy E., Thiele G. The use of true potato seeds as a pro-poor technology: the efforts of an International Agricultural Research Institute to innovating potato production. Potato Res., 2009, 52: 275-293 CrossRef
  50. Jansky S.H., Charkowski A.O., Douches D.S., Gusmini G., Richael C., Bethke P.C., Spooner D.M., Novy R.G., De Jong H., De Jong W.S., Bamberg J..B., Thompson A.L., Bizimungu B., Holm D.G., Brown C.R., Haynes K.G., Sathuvalli V.R., Veilleux R.E., Miller C., Jr., Bradeen J.M., Jiang J.M. Reinventing potato as a diploid inbred line-based crop. Crop Sci., 2016, 56: 1412-1422 CrossRef
  51. KWS to fully focus on hybrid potato breeding and divest its conventional seed potato business. Available No date.