doi: 10.15389/agrobiology.2017.1.191eng

UDC 631.46:574.24:546.30-022.532

Supported by Russian Science Foundation (grant № 14-36-00023).



E.V. Yausheva1, Е.А. Sizova1, 2, I.A. Gavrish2, S.V. Lebedev2,
F.G. Kayumov1

1All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia,
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia,

Sizova Е.А.
Yausheva E.V.
Lebedev S.V
Gavrish I.A.
Kayumov F.G.

Received June 14, 2016


With the accumulation of experimental data it is evident that nanomaterials, which are widely used in human activity, look promising for agronomy. However, available publications on a comprehensive assessment of biological risks arising from nanoherbicides, nanofertilizers, etc., in particular on how the metal nanoparticles affect geobionts, are very limited. In the model experiments with California red worms Eisenia foetida as test organisms we studied the influence of aluminum oxide nanoparticles on soil biocoenosis and their biodegradation. We found an increase in mortality of worms up to 20 % at the maximum dosage of aluminum oxide nanoparticles introduced into the soil. Assay of antioxidant defense enzyme activity in the E. foetida revealed an increased superoxide dismutase and catalase level as influenced by the studied nanoparticles. The positive effect of their vermicomposting was shown. At increasing content of aluminum oxide nanoparticles (the nanoparticle dosage of 50, 100, 300, and 3000 mg/kg in the groups 1, 2, 3, and 4, respectively), the 61.7-67.6 % reduction in soil microorganism counts was found without vermicomposting vs. 55.6-61.3 % under vermicomposting. The number of microorganisms in the soil decreased in the groups 1, 2, 3 and 4 by 42.8, 52.4, 61.9 and 76.2 % for fungi, by 64.3, 77.9, 78.6 and 85.7 % for nitrogen-fixing bacteria, and by 22.7, 38.6, 84.1 and 86.4 % for bacteria cultured on starch-and-ammonia agar. The number of cellulolytic bacteria increased by 6.9 % in the group 1 and decreased by 16.7, 12.5 and 25.0 % in the groups 2, 3 and 4, respectively. A similar trend was observed under the influence of aluminum oxide nanoparticles on the E. foetida intestinal microflora. As the soil content of aluminum oxide nanoparticles increased from 50 to 3000 g/kg, the total number of microorganisms in the E. foetida intestine decreased by 9.7 to 43.2 %. In this, fungi decreased in the groups 1, 2, 3 and 4 by 18.0, 20.0, 39.0 and 40.0 % as compared to control. The number of nitrogen-fixing bacteria was insignificant in the control samples and decreased in the E. foetida intestine in the groups 1, 2, 3 and 4 by 16.0, 60.0, 78.8 and 80.0 %. The cellulolytic bacteria counts increased in the intestine of E. foetida (by 16.0 %) at minimum nanoparticle dosages, whereas in the groups 2, 3 and 4 this index was lower by 8.0, 32.0, 25.0 and 40.0 %. The number of bacteria cultured on starch-and-ammonia agar decreased in the E. foetida intestine in groups 1, 2, 3 and 4 by 13.3, 46.7, 60.0 and 73.3 %. Therefore, our data indicate dose-dependent effects of aluminum oxide nanoparticles and gradual development of their toxicity toward soil and intestinal microflora at increasing levels in the soil. The negative impact of the aluminum oxide nanoparticles on soil biocenosis was shown that was manifested in its depletion, leading to soil degradation and decreased fertility. We confirmed the necessity for complex assessment of nanoparticle biotoxicity in a variety of habitats. The antioxidant system activityin the presence of Al2O3 nanoparticles is indicative of E. foetida adaptability to stress caused by these agents.

Keywords: nanoparticles, Eisenia fоetida, catalase, superoxide dismutase, microorganisms.


Full article (Rus)

Full text (Eng)



  1. Yeo J., Kim G., Hong S., Kim M.S., Kim D., Lee J., Ko S.H. Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. Journal of Power Sources, 2014, 246: 562-568 CrossRef
  2. Shahravan A., Desai T., Matsoukas T. Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials. ACS Applied Materials & Interfaces, 2014, 10(6): 7942-7947 CrossRef
  3. Luska K.L., Julis J., Stavitski E., Zakharov D.N., Adams A., Leitner W. Bifunctional nanoparticle—SILP catalysts (NPs@SILP) for the selective deoxygenation of biomass substrates. Chemical Science, 2014, 12(5): 4895-4905 CrossRef
  4. Machado S., Grosso J.P., Nouws H.P.A., Albergaria J.T., Delerue-Mat-
    os C. Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Science of the Total Environment, 2014, 496: 233-240 CrossRef
  5. Ju C., Mo R., Xue J., Zhang L., Zhao Z., Xue L., Zhang C. Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed., 2014, 53: 6253-6258 CrossRef
  6. Ansari M.A., Khan H.M., Khan A.A., Sultan A., Azam A. Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J. Microbiol. Biotechnol., 2012, 28(4): 1605-1613 CrossRef
  7. Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids and Surfaces B: Biointerfaces, 2012, 96: 50-55 CrossRef
  8. Rai M., Ingle A.P., Birla S., Yadav A., Santos C.A.D. Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology, 2016, 42(5): 696-719 CrossRef
  9. Manimaran M. A review on nanotechnology and its implications in agriculture and food industry. Asian Journal of Plant Science and Research, 2015, 5(7): 13-15.
  10. Mishra S., Singh H.B. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl. Microbiol. Biotechnol., 2015, 99(3): 1097-1107 CrossRef
  11. Li X., Yang Y., Gao B., Zhang M. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS ONE, 2015, 10(4): 1-12 CrossRef
  12. Novitskaya N.V., Dzhemesyuk A.V. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2015, 127(5): 127 (in Russ.).
  13. Zinchenko V.A. Khimicheskaya zashchita rastenii: sredstva, tekhnologiya i ekologicheskaya bezopasnost' [Chemical protection of plants: preparations, technologies, and environmental friendliness]. Moscow, 2005 (in Russ.).
  14. Shugalei I.V., Garabadzhiu A.V., Ilyushin M.A., Sudarikov A.M. Ekologicheskaya khimiya, 2012, 21(3): 172-186 (in Russ.).
  15. Lushchaeva I.V., Morgalev S.N. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2009, 8(4): 97-103 (in Russ.).
  16. Heckmann L.-H., Besenbacher F., Janeck J., Hovgaard M.B., Sutherland D.S., Autrup H. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology, 2011, 20: 226-233 CrossRef
  17. Sadiq I.M., Pakrashi S., Chandrasekaran N., Mukherjee A. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J. Nanopart. Res., 2011, 13: 3287-3299 CrossRef
  18. Azmat H., Javed M., Jabeen G. Acute toxicity of aluminium to the fish (Catla catla, Labeo rohita and Cirrhina mrigala). Pak. Vet. J., 2012, 32(1): 85-87.
  19. Silva S. Aluminium toxicity targets in plants. Journal of Botany, 2012, 2012: Article ID 219462 CrossRef
  20. Dovic M., Lestan D. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ. Pollut., 2010, 158(8): 2766-2772 CrossRef
  21. Saez G., Aye M., Meo M., Aimé A., Bestel I., Barthélémy P., Giorgio C. Genotoxic and oxidative responses in coelomocytes of Eisenia fetida and Hediste diversicolor exposed to lipid coated CdSe/ZnS quantum dots and CdCl2. Environ. Toxicol., 2015, 30(8): 918-926 CrossRef
  22. Edwards C.A., Bohlen P.J. Biology and ecology of earthworms. V. 3. Springer Science & Business Media, 1996.
  23. Vlcková K., Hofman J. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. Environ. Pollut., 2012, 160: 49-56 CrossRef
  24. Metody pochvennoi mikrobiologii i biokhimii /Pod redaktsiei D.G. Zvyagintseva [Methods of soil microbiology and biochemistry. D.G. Zvyagintsev (ed.)]. Moscow, 1991 (in Russ.).
  25. Zakharova N.G., Alimova F.K., Egorov S.Yu. Mikrobiologicheskii monitoring pochv [Microbiological monitoring of soils]. Kazan, 2005(in Russ.).
  26. Fajardo C., Saccà M.L., Costa G., Nande M., Martin M. Impact of Ag and Al2O3 nanoparticles on soil organisms: in vitro and soil experiments. Science of The Total Environment, 2014, 473-474: 254-261 CrossRef
  27. Sadiq R., Khan Q.M., Mobeen A., Hashmat A.J. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug. Chem. Toxicol., 2015, 38(2): 152-161 CrossRef
  28. Tilston E.L., Collins C.D., Mitchell G.R., Princivalle J., Shaw L.J. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ. Pollut., 2013, 173: 38-46 CrossRef
  29. Ko K.S., Kong I.C. Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation. Appl. Microbiol. Biotechnol., 2014, 98(7): 3295-3303 CrossRef
  30. Ismail R.A., Sulaiman G.M., Abdulrahman S.A., Marzoog T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 53: 286-297 CrossRef
  31. Liang H.Y., Li Y.S., Sun J. Effect of aluminum ion on activities of important antioxidant enzymes from earthworms, Eisenia andrei. Journal of Shanghai Jiaotong University (Agricultural Science), 2007, 25: 551-555.
  32. Richards K.D., Schott E.J., Sharma Y.K., Davis K.R., Gardner R.C. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol., 2016, 116: 409-418 CrossRef
  33. Yoon C., Koppula S., Yoo S., Yum M., Kim J., Lee J., Song M. Rhus javanica Linn protects against hydrogen peroxide induced toxicity in human Chang liver cells via attenuation of oxidative stress and apoptosis signaling. Mol. Med. Rep., 2016, 13(1): 1019-1025 CrossRef
  34. Sun W., Tai T.Y., Lin Y.S. Effect of monosultap on protein content. SOD and AChE activity of Eisenia foetida under two different temperatures. J. Agro-Environ. Sci., 2007, 26: 1816-1821.
  35. Kunwar A., Priyadarsini K.I. Free radicals, oxidative stress and importance of antioxidants in human health. Journal of Medical and Allied Sciences, 2011, 1(2): 53-60.
  36. Shinde A., Ganu J., Naik P. Effect of free radicals & antioxidants on oxidative stress: a review. Journal of Dental and Allied Sciences, 2012, 1(2): 63-66.
  37. Ghosh S., Mashayekhi H., Pan B., Bhowmik P., Xing B. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir, 2008, 24(21): 12385-12391 CrossRef
  38. Tourinho P.S., van Gestel C.A., Lofts S., Svendsen C., Soares A.M., Loureiro S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem., 2012, 31(8): 1679-1692 CrossRef
  39. Fang T., Watson J., Goodman J., Dimkpa C.O., Martineau N., Das S., McLean J.E., Britt D.W., Anderson A.J. Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol. Res., 2013, 168(2): 91-98 CrossRef
  40. Pawlett M., Ritz K., Dorey R.A., Rocks S., Ramsden J., Harris J.A. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ. Sci. Pollut. Res., 2013, 2: 1041-1049 CrossRef
  41. Mynbaeva B.N. Vestnik Bashkirskogo universiteta, 2012, 3: 1282-1284 (in Russ.).
  42. Li H., Chen Q., Zhao J., Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Scientific Reports, 2015, 5: Article number 11033 CrossRef
  43. Burke D.J., Pietrasiak N., Situ S.F., Abenojar E.C., Porche M., Kraj P., Lakliang Y., Samia A.C. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int. J. Mol. Sci., 2015, 16(10): 23630-23650 CrossRef
  44. Byzov B.A., Nechitailo T.Yu., Bumazhkin B.K., Kurakov A.V., Golyshin P.N., Zvyagintsev D.G. Mikrobiologiya, 2009, 78(3): 404-413 (in Russ.).