doi: 10.15389/agrobiology.2017.1.116eng

UDC 635.21:632.3/.4:632.9:579.64

Experiments were performed using equipment of the Center of Genome Technologies and Cell Biology (ARRIAM).
Supported by Russian Science Foundation (grant № 14-16-00146).



A.V. Shcherbakov1, E.N. Shcherbakova1, S.A. Mulina1, 2, P.Yu. Rots1, 2,
R.F. Daryu3, E.I. Kiprushkina4, L.N. Gonchar5, V.K. Chebotar’1

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
2Saint PetersburgState Technical University, 26, Moskovskii prosp., St. Petersburg, 190013 Russia;
3Sup'Biotech private engineering school, 66 rue Guy Môquet, Villejuif, Paris, 94800 France;
4ITMO University (Saint Petersburg National Research University of Information Technologies, Mechanics and Optics), 9, ul. Lomonosova, St. Petersburg, 191002 Russia;
5National University of Nature and Bioresources of Ukraine, 15, vul. Geroiv Oborony, m. Kiev, 03041 Ukraine

Shcherbakov A.V.
Shcherbakova E.N.
Mulina S.A.
Rots P.Yu.
Daryu R.F. 
Kiprushkina E.I.
Gonchar L.N.
Chebotar’ V.K.

Received December 11, 2016


Abundant pathogens which attack seed and food potato tubers are a serious problem of the modern potato growing that causes significant losses during storage. Regular use of chemical fungicides and agrochemicals has led to emergence of resistance and an increased aggressiveness of plant pathogenic microorganisms. New fungal and bacterial strains and races are also appearing which spread rapidly and cause great damage to agricultural production. In this regard, the biologicals based on biocontrol microorganisms, instead of chemicals, are considered particularly relevant to protect seed and food potatoes from infectious diseases. A genus Pseudomonas belonging to the group of plant-growth promoting rhizobacteria (PGPR) includes species most effectively colonizing higher plants and used as active agents of biological products. Scientific novelty of our work lies in the fact that this study is the first to report the effect of psychrophilic strain Pseudomonas spp. RF13H on the storage of potato tubers. The cold resistant commercial varieties recommended for cultivation in the Leningrad region has been involved. For the first time we estimated the efficiency of tubers protection from a number of pathogenic microorganisms under refrigerated storage, assessed the population dynamics of introduced strain, and visualized the pattern of bacteria distribution and localization on the surface, using fluorescent in situ hybridization and confocal laser scanning microscopy. Using molecular genetic analysis, we have clarified the taxonomic position of several Pseudomonas strains, including psychrophilic strain Pseudomonas spp. RF13H. This strain possessed fungicidal and bactericidal activity against saprogenic and pathogenic microorganisms and was agronomically and physiologically tested. Its growth at low temperatures and production of auxin-like phytohormones were studied. Pseudomonas spp. RF13H influenced positively preservation and biochemical processes in potato tubers under refrigerated storage. Its microcolonies were often localized in different cracks, grooves and recesses on the stored tuber surface that indicated beneficial plant-microbial relations and explained a strategy for tuber colonization at room and low temperature during storage. The occurrence of surface phytopathogenic microorganisms decreased in the presence of Pseudomonas spp. RF13H, and the average number of all type-infected tubers was about 50 % lower among those treated with Pseudomonas spp. RF13H comparing to untreated ones. This trend continued for 3 month storage, i.e. the amount of infected untreated tubers reached 30 % and reduced up to 10-13 %, when treatment with biocontrol strain. At a temperature of 4 °С, the bacterial counts was quite stable for 5 months, and then significantly decreased (up to trace quantities) to the end of storage. The bacteria concentrated at the boundaries between the individual cells of tuber periderm and in the places of exudation of biochemical substances that serves as nutrients for bacteria. Introduction of Pseudomonas spp. RF13H was shown to contribute to redox processes (activation of antioxidant protection system enzymes — catalase, peroxidase, superoxide dismutase) thus increasing plant resistance to pathogens. Additionally, this strain has a positive effect on the microbiome composition in potato epidermis. Induction of own immunity and creation of a barrier preventing pathogen penetration helped to reduce infection in the potatoes tuber.

Keywords: Pseudomonas, potato, biocontrol of plant pathogens, fluorescence in situ hybridization.


Full article (Rus)

Full text (Eng)



  1. Phatak H.C. The role of seed and pollen in the spread of plant pathogens particularly viruses. Tropical Pest Management, 2009, 26(3): 278-285 CrossRef
  2. Darrasse A., Arnaud Darsonval A., Boureau T., Brisset M.-N., Durand K., Jacques M.-A. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Appl. Environ. Microbiol., 2010, 76(20): 6787-6796 CrossRef
  3. Russian Federation. Available No date.
  4. Bale J.S., van Lenteren J.S., Bigler F. Biological control and sustainable food production. Phil. Trans. R. Soc. B, 2008, 363(1492): 761-776 CrossRef
  5. Vuro M. Enhancing biocontrol agents and handling risks. M. Vurro, J. Gressel, T. Butt, G.E. Harman, A. Pilgeram, R.J. Leger, D.L. Nuss (eds.). IOS Press, Amsterdam, 2001.
  6. Rosenblueth M., Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact., 2006, 19: 827-837 CrossRef
  7. Holliday P. A dictionary of plant pathology. Cambridge University Press, Cambridge, 1989 CrossRef
  8. Schulz B., Boyle C. What are endophytes? In: Microbial root endophytes. B.J.E. Schulz, C.J.C. Boyle, T.N. Sieber (eds.). Springer-Verlag, Berlin, 2006: 1-13.
  9. Maksimov I.V., Abizgil'dina R.R., Pusenkova L.I. Prikladnaya biokhimiya i mikrobiologiya, 2011, 47: 373-385 CrossRef (in Russ.)
  10. Manter D.K., Delgado J.A., Holm D.G., Stong R.A. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb. Ecol., 2010, 60: 157-166 CrossRef
  11. Inceoglu O., Falcao Salles J., van Elsas J.D. Soil and cultivar type shape the bacterial community in the potato rhizosphere. Microb. Ecol., 2012, 63: 460-470 CrossRef
  12. Weinert N., Piceno Y., Ding G.C., Meincke R., Heuer H., Berg G., Schloter M., Andersen G., Smalla K. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol. Ecol., 2011, 75: 497-506 CrossRef
  13. Andreote F.D., Rocha U.N., Araújo W.L., Azevedo J.L., van Overbeek L.S. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek, 2010, 97: 389-399 CrossRef
  14. Reiter B., Pfeifer U., Schwab H., Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol., 2002, 68: 2261-2268 CrossRef
  15. Garbeva P., Overbeek L.S.S., Vuurde J.W., Elsas J.D.D. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol., 2001, 41: 369-383 CrossRef
  16. Perombelon M.C.M., Gullings-Handley J., Kelman A. Population dynamics of Erwinia carotovora and pectolytic Clostridium spp. in relation to decay of potatoes. Phytopathology, 1979, 69: 167-173 CrossRef
  17. Koiv V., Roosaare M., Vedler E., Kivistik P.A., Toppi K., Schryer D.W., Remm M., Tenson T., Mae A. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Scientific Reports, 2015, Article number 11606: 1-18 CrossRef
  18. Andreote F.D., de Araújo W.L., de Azevedo J.L., van Elsas J.D., da Rocha U.N., van Overbeek L.S. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol., 2009, 75: 3396-3406 CrossRef
  19. Verma V.C., Gange A.C. Advances in endophytic research. Springer Science & Business Media, Berlin, 2013 (ISBN 978-81-322-1575-2).
  20. Shcherbakov A.V. Endofitnye soobshchestva sfagnovykh mkhov kak istochnik bakterii — effektivnykh assotsiantov sel'skokhozyaistvennykh kul'tur. Avtoreferat kandidatskoi dissertatsii [Endophytic community of sphagnum moss as a source of crop effective bacterial assiociants. PhD Thesis]. St. Petersburg, 2014 (in Russ.).
  21. Korostik E.V., Pinaev A.G., Akhtemova G.A., Andronov E.E. Ekologicheskaya genetika, 2006, 4(4): 32-37 (in Russ.).
  22. Magnusson J., Schnurer, J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. App. Envir. Microbiol., 2001, 67(1): 1-5 CrossRef
  23. Zenova G.M., Stepanov A.L., Likhachev A.A., Manucharova N.A. Praktikum po biologii pochv [Soil biology practicum]. Moscow, 2002 (in Russ.).
  24. Tepper E.Z., Shil'nikova V.K. Praktikum po mikrobiologii [Microbiology practicum]. Moscow, 2004 (in Russ.).
  25. Sin'kevich M.S., Naraikina N.V., Trunova T.I. Fiziologiya rastenii, 2011, 58: 875-882 (in Russ.).
  26. Kumar G.N., Knowles N.R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme during aging and sprouting of potato (Solanum tuberosum L.) seed-tubers. Plant Physiol., 1993, 102: 115-124 CrossRef
  27. Naraikina N.V., Sin'kevich M.S., Demin I.N., Selivanov A.A., Moshkov I.E., Trunova T.I. Fiziologiya rastenii, 2014, 61: 359-366 (in Russ.).
  28. Integrated DNA Technologies. Available No date.
  29. Cardinale M., Vieira de Castro J., Muller H., Berg G., Grube M. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscular reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol., 2008, 66: 63-71 CrossRef
  30. Shcherbakov A.V., Bragina A.V., Kuz'mina E.Yu., Berg K., Muntyan A.N., Makarova N.M., Mal'fanova N.V., Kardinale M., Berg G., Chebotar' V.K., Tikhonovich I.A. Mikrobiologiya, 2013, 82(3): 312-322 (in Russ.).
  31. Peix A., Ramírez-Bahena M.H., Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infection, Genetics and Evolution, 2009, 9(6): 1132-1147 CrossRef
  32. Cornelis P. Pseudomonas: genomics and molecular biology. Horizon Scientific Press, Pool, 2008 (ISBN 978-1-904455-19-6).
  33. Toth E.M., Borsodi A.K, Felfoldi T., Vajna B., Sipos R., Marialigeti K. Practical microbiology. Eötvös Loránd Tudományegyetem, Budapest, 2013.
  34. Wegener C.B., Jansen G. Antioxidant capacity in cultivated and wild Solanum species: The effect of wound stress. Food Funct., 2010, 1: 209-218 CrossRef
  35. Grace S.C. Phenolics as antioxidants. In: Antioxidants and reactive oxygen species in plants. N. Smirnoff (ed.). Blackwall Publishing Ltd, Oxford, 2005.
  36. Wegener C.B., Jansen G. Antioxidants in different potato genotypes: effect of drought and wounding etress. Agriculture, 2013, 3: 131-146 CrossRef
  37. Verkhoturov V.V., Toporishcheva V.K. Khranenie i pererabotka sel'khozsyr'ya, 2003, 9: 26-30 (in Russ.).
  38. Kiprushkina E.I.  Vestnik Mezhdunarodnoi akademii kholoda, 2007, 3: 34-38 (in Russ.).
  39. Kolodyaznaya V.S., Kiprushkina E.I. Kholodil'naya tekhnologiya pishchevykh produktov (biokhimicheskie i fiziko-khimicheskie osnovy) [Food refrigeration technolofies: biochemical amd phsysicochemical aspects]. St. Petersburg, 2008 (in Russ.). 
  40. Pautov A.A. Morfologiya i anatomiya vegetativnykh organov rastenii [Morphology and anatomy of plant vegetative organs]. St. Petersburg, 2012 (in Russ.).
  41. Oleskin A.V., Botvinko I.V. Mikrobiologiya, 2000, 69: 309-327 (in Russ.).