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A b s t r a c t  
 

The use of nonpathogenic soil bacteria living in association with the roots of higher plants 
enhances the adaptive potential of the hosts, stimulates their growth and serves as a promising alter-
native to chemical pesticides (V.K. Chebotar’ et al., 2015). The bacterium Bacillus subtilis is recognized 
as a powerful biocontrol tool because of suppression of a wide range of phytopathogens due to the abil-
ity to produce a variety of secondary metabolites of different chemical nature, e.g. cyclic lipopeptides, 
polypeptides, proteins and nonpeptidic compounds (T. Stein, 2005). Information on the structure of 
bioactive metabolites of bacterial antagonists of phytopathogens, as well as mechanisms of their 
biological activity promotes targeted selection of strains for the development of microbiological 
products. B. subtilis is widely distributed due to the ability to form biofilms (A.L. McLoon et al., 
2011). The chemical composition of compounds produced by the bacteria is determined by genetic 
characteristics and physical and chemical conditions of the environment. The cyclic lipopeptide sur-
factin exhibits antimicrobial (antibacterial, antiviral, antifungal) activity, causing lysis of the cell, and 
also contributes to a decrease in the production of mycotoxins by microorganisms (M. Mohammadi-
pour et al., 2009). The structure of another peptide metabolite, rizocticin, promotes penetration into 
the microbial cell and inhibition of protein synthesis (K. Kino et al., 2009). B. subtilis can produce 
various hydrolytic enzymes which lyse the phytopathogenic fungus cell wall (C.P. Quardros et al., 
2011). Among the metabolites synthesized by bacteria, lantibiotics play important role, their structure 
allows the synthesis of peptidoglycan which contributes to the formation of pores in cytoplasmic mem-
brane (J. Parisot et al., 2008). A large family of polyketones exhibits antimicrobial activity due to the 
ability to collect multifunctional polypeptides into large pesticide complexes. The phospholipid antibi-
otic bacilizycin, which is produced immediately after the growth ceases and before the formation of 
thermostable spores, exhibits fungicidal activity against some fungi (A. Hamdache et al., 2011). Some 
strains of B. subtilis synthesize polyene antibiotics with conjugated double bonds, for example, hex-
aenes which inhibit growth of phytopathogenic fungi (E.B. Kudryashova et al., 2005). Several soil 
microorganisms, including strains of B. subtilis, can synthesize gibberellins and gibberellin-like sub-
stances that stimulate plant growth (R. Aloni et al., 2006). Proteins, lipopeptides, polysaccharides 
and other compounds associated with the B. subtilis cell wall can trigger the protective mechanism of 
the plant, that is, act as elicitors (M. Ongena et al., 2007). Thus, research aimed at studying biologi-
cally active metabolites of B. subtilis, which possess the properties of biopesticides or inducers of 
plant resistance to diseases, opens new prospects for the development of environmentally friendly 
technologies for protection against phytopathogens. 
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Biological control by microorganisms is a promising alternative to an ex-
tend use of expensive pesticides, that accumulate in plants with adverse effects 
on humans health. Pesticides can also be lethal to beneficial soil inhabitants and 
cause emergence of pathogen strains resistant to fungicides. They have a short-
term inhibitory effect of phytopathogenic microorganisms, whereas bioagents 
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affect negatively on phytopathogens during the whole growing season [1-5]. 
Non-pathogenic soil bacteria associated with the roots of higher plants 

enhance their adaptive potential of the hosts, and promote their growth. In 1980 
J.M. Kloepper called them plant growth promoting rizobacteria (PGPR). One of 
the plant rhizosphere characteristics, reflecting its colonization by microorgan-
isms, is a rhizosphere/soil quantitative parameter (R/S). In most rhizobacteria, 
the R/S value varies from 2 to 25 [6]. Rhizobacteria can act as biocontrol agents 
due to ability to compete with phytopathogens for ecological niche [7], to pro-
duce different antibacterial compounds [8-10], to affect plant defense system, to 
promote plant growth by increasing availability of nutrients (nitrogen, phospho-
rus, amino acids) from soil [11].  

The purpose of this paper is to data about biologically active metabolites 
of Bacillus subtilis which is recently considered a powerful biocontrol tool.  

 B. subtilis can contact with higher plants and promotes their growth.   
B. subtilis species is better than other agents of the genus Bacillus and more suit-
able as biocontrol agent because of host wide range, ability to form endospores 
and to produce different antibiotics [12]. B. subtilis has suppressive activity in 
vitro against more than 20 phytopathogens due to the ability to produce a variety 
of secondary metabolites, e.g. cyclic lipopeptides, polypeptides, proteins and 
non-peptidic compounds [13, 14]. These agents, mainly peptides, are of ribosomal 
or non-ribosomal origins [15].  

The main antibiotics of B. subtilis which suppress phytopathogens are 
peptide derivatives, mainly lipopeptides, synthesized non-ribosomally [15]. Lipo-
peptide antibiotics are produced by binding β-hydroxyl residues or β-amino 
groups with fatty acids. The length and branching of fatty acids chains and ami-
no acid redisues determine the product properties [16]. 

  B. subtilis bacteria are common in the environment, because many wild 
strains are able to form biofilm on the plants roots surface [17, 18]. Cyclic ly-
popetide surfactin contains carboxylic acid (3-hydroxy-13-methyltetradecanoic 
acid) and seven aminoacids. The molecule contains heptapeptide associated with 
the β-hydroxy fatty acid through lactonic bound [19, 20]. Another surfactin ana-
logues are pumilacidin, bacircin and lihenizin [21]. Surfactin is one of the most 
active biosurfactants [13, 21], famous as simulator of biofilms formation. Partly, 
it is due to activation of membrane-sensitive histidine kinase [17, 22, 23].  

Exopolymeric compounds play an important role in biofilm formation, 
and their chemical composition affects biofilm properties and quality [24, 25]. 
Biofilms promote the colonization of roots by bacteria and thereby increase the 
local antibiotics concentration [26]. Also its formation enhances antimicrobial 
resistance [27-29]. Surfactin has antibacterial, antiviral, antifungal, insecticide, 
herbicidal activities [30-34], stimulates resistance to the pathogen penetration 
affecting on protective plant mechanism [35, 36]. Biocontrol of the phytopatho-
genic fungus Aspergillus flavus by surfactin reduces plant contamination by my-
cotoxins (37). 

Many authors group mycosubtilins, iturin and bacillomycin, the cyclic 
lipoheptapeptides which are similar in structure and show powerful antifungal 
and hemolytic features but limited antibacterial activity, under the general title 
iturins. Antifungal effect is manifested in interacting with the cytoplasmic cells 
membrane with formation of ion-permeable pores [38, 39]. In China, a new 
strain of B. subtilis has been isolated, which can produce jiean-peptide, an anti-
biotic similar in structure to iturin [40]. Jiean-peptide manifests fungicidal proper-
ties against various plant pathogens [41, 42]. The strain can produce this biofungi-
cidal compound provided that the bacterial cells are adsorbed on wood pieces. 

Fengycin (synonym plipastatin) combines several compounds of unusual 
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structure, i.e. cyclic, branched components and rare substances [43]. It contains β-
hydroxy fatty acid associated with the N-terminal decapeptide, which includes 
four β-amino acids residues and rare L-ornithine amino acid. The C-end residue 
of the peptide is partially linked with the tyrosine residue at position 3, with 
branching point of acyl peptide and the 8-membered lactone ring also persisting 
[15]. Fengycin has antifungal activity against some thread like fungi [44]. This 
compound is successfully used to control Fusarium moniliforme, due to inhibition 
of mycelia growth and spore formation. A possible mechanism of fungicin antifun-
gal activity involves interaction of the styrene molecules and phospholipid mem-
brane which disrupts target cell membrane structure [45-47]. 

Rhizocticin is a phosphonate oligopeptides antibiotic produced by the 
gram-positive B. subtilis ATCC 6633 strain [48]. This is di- and tripeptide, con-
taining arginine amino acid and L-2-amino-5-phosphono-3-pentenoic amino 
acid, not found in proteins. Rhizocticins penetrate into the fungal cell through the 
oligopeptide transport system. As a result, the non-protein phosphate-containing 
amino acid peptidase releases which inhibits protein synthesis. Phosphonate com-
pounds are common among biologically active substances mainly due to their abil-
ity to influence the carboxy- and phosphate-containing metabolites [46]. 

Lantibiotics (lanthionine-containing peptide antibiotics) are ribosomally 
synthesized peptide antibiotics with unique features. Lanthionine is produced by 
ribosomal synthesis or by modification (serine dehydration and subsequent bind-
ing with thiol cysteine groups) [49]. Properties of various types of lantibiotics 
depend on their structure and, thence, differ. Lantibiotics of A type (21-38 ami-
no acid residues) have more linear secondary structure and destroy gram-positive 
target cells, forming pores in the cytoplasmic membrane. 

Subtilin is a 32-amino acid pentacyclic lantibiotic structurally similar to 
nisin of Lactococcus lactis which is widely used in biocontrol [50]. Both cell den-
sity and sporulation can regulate synthesis of lantibiotics. The lantibiotics pro-
duced by gram-positive bacteria inhibit synthesis of peptidoglycans and shorten 
the peptidoglycan molecule, which facilitates the pores formation [51]. Serine 
proteases also participate in the subtilin synthesis. High lipopeptide mycosubtilin 
content (880 mg/g) is found in the B. subtilis strain with antagonistic effect on 
Candida sp. [18]. 

Ericin S differs from subtilis only in four amino acids, that is, the anti-
microbial properties of both lantibiotics should be comparable. However, ericin 
A differs from erysin S in the ring structure and the position of 16 amino acids 
[16]. The lantibiotic mersacidin refers to type B lantibiotics which have a larger 
molecule size and a diverse structure. 

Subtilomycin is synthesized by B. subtilis MMA7 isolated from the ma-
rine sponge Halilona simulans. Several strains of B. subtilis synthesize subtilosin 
A which has a macrocyclic structure with three intermediate bounds, including 
both ether bonds between cysteine sulfate and α-carbon of amino acids [15]. 
Sublancine 168 with β-methyllanthionine bridge and two disulfides bonds rare 
for lantibiotics is active mainly against gram-positive bacteria. 

B. subtilis bacteria are applied as producers of amylase, protease, chi-
tinase, xylanase, lipase, gluconase, cellulase, and other enzymez [52, 53]. Bacilli 
attach to hyphae and lyse fungal cell walls to use lysates as an additive nutrients 
and energy sources [54].  

B. subtilis along with the peptide antibiotics produce polyketones which 
are active agents for phytopathogens biocontrol. Polyketones are a metabolite 
family which consists of polyketon synthetase enzymes with antimicrobial activi-
ty due to ability to gather multifunctional polypeptides into big pesticide com-
plexes. These are linear molecules with two amide bounds and different residues 
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and substituent in structure. These metabolites are grouped based on structure 
and functions [40, 43]. 

Phospholipid antibiotic bacilysocin is produced by B. subtilis 168 just af-
ter growth cessation and before thermostable spore formation. Its activity is more 
pronounced against eukaryotic Sacharomyces cerevisiae, and also lower fungi 
Candida pseudotropicalis and Cryptococus neoformans characterized by non-
filamentary growth [55, 56]. 

Phospholipids produced by B. subtilis, possess antimicrobial activity 
against gram-negative bacteria (Escherichia coli, Proteus mirabilis and Pseudomo-
nas aeruginosa), gram-positive bacteria (Staphylococcus aureus and Enterococcus 
faecalis), Actinomyces sp. and fungi (Aspergillus niger, Candida albicans) [57]. It 
has been found, that their antimicrobial effect is enhanced with rising tempera-
ture (up to 50 С) and pH (up to 10) [58, 59]. 

Some B. subtilis strains produce metabolites of polyene antibiotic groups 
with conjugated double bonds. Hexaenes of other B. subtilis strains inhibit the 
growth of phytopathogenic Fusarium culmorum, F. sporotrichiella, F. oxysporum, 
Botrytis sorokiniana, Alternaria tenui and Phytophthora infestans [60]. 

Isocoumarins are phenolic compounds that occur in Bacillus species as 
phenylpropanol derivatives. Eleven strains of B. subtilis isolated from various ge-
ographical and ecological niches, produce amicoumacins classified as antibiotics 
of the isocoumarin group. Amicoumacin and bacillosarcin extracted from the 
culture liquid of B. subtilis marine bacterium TP-B0611, protect plants from 
grain moth [43]. 

Isoprene makes the smallest group of the natural terpenoids. Unlike oth-
ers bacteria, B. subtilis 6051, B. subtilis 23029 and B. subtilis 23856 produce vola-
tile isoprene at relatively high concentrations [43]. Sporulenes A, B and C are 
three terpenoids isolated from B. subtilis spores, which can protect spores of ba-
cilli from oxidative stress. The biological role of sporulenes is determined by 
sporulation of B. subtilis [43]. 

Some strains of B. subtilis produce gibberellins and gibberellin-like sub-
stances [61]. Cytokinins are regulators of cell division and differentiation in various 
plant tissues. They play an important role in the growth and nodules formation. It 
is shown that B. subtilis cells produce volatile compounds stimulating plant growth, 
mainly of 3-hydroxybutan-2-one and butane-2,3-diol [46, 57]. 

Induced plant resistance is due to interaction between plants and micro-
organisms among which bacteria of rhizosphere, in particular B. subtilis, play an 
important role. Proteins, lipopeptides, polysaccharides and other compounds 
associated with the cell wall of the B. subtilis may be elicitors which trigger plant 
defense response [61, 62]. Bacterial metabolites trigger cascade of defense pro-
cesses, including formation of reactive oxygen species, proteins phosphorylation, 
initiation of phytoimmunity mechanisms, that lead to the development of system 
resistance [63, 64]. Cyclic lipopeptides, the surfactin, iturin, and fenghin, can 
influence the signaling cells of plants, that results in initiation of natural immune 
responses [65]. 

Compounds released from the cell wall of the phytopathogens by hydro-
lases of antagonists can function as elicitors of resistance and cause defensive 
response, e.g. synthesis of phytoalexins, activation of hydrolytic enzymes, lignifi-
cation etc. For example, B. subtilis AF1 strain isolated from the soil suppressive 
to Fusarium udum can induce resistance against Aspergillus niger in ground-pea 
[66]. This strain, being an inducer of resistance, is a stimulant of accumulation 
of phenylalanine ammonia-lyase and peroxidase. In other systems, significant 
changes of plants cells defense responses are related to phenol modifications. 
Treatment of tobacco plants with cell suspension at low surfactin concentration 
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activates phosphorylation and oxidative reactions, leading to plant cell death and 
penetration of phytopathogens [67]. 

So, Bacillus subtilis cells produce significant quantity of bioactive metab-
olites, having different chemical structure: cyclic lipopetides, proteins, polypep-
tides, ketone, polyenoic compounds etc. Ability to synthesize compounds of a 
particular structure presumes a specific mechanism of bacterial action on a phy-
topathogenic organism, and also explains the biological activity of a particular 
bacterial strain against certain microorganisms. When selecting effective producer 
strains, it is necessary to pay attention to the structure of their metabolites, since 
they can be the basis for the development of environmentally friendly technolo-
gies for plant protection against phytopathogens. 
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