PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1134eng

UDC: 636.32/.38:575.162:577.2

Acknowledgements:
The equipment of the Center for Biological Resources and Bioengineering of Agricultural Animals (Ernst Federal Research Center for Animal Husbandry) was used.
Performed with the financial support of the Russian Science Foundation (RSF No. 21-66-00007). Sheep samples were obtained as part of the assignment of the Ministry of Science and Higher Education of the Russian Federation (No. 0445-2019-0024).

 

A STUDY OF MATERNAL VARIABILITY OF RUSSIAN LOCAL SHEEP BREEDS BASED ON ANALYSIS OF CYTOCHROME b GENE POLYMORPHISM

O.A. Koshkina1, Т.Е. Deniskova1 , А.V. Dotsev1, E. Kunz2,
M. Upadhyay2, S. Krebs3, A.D. Solovieva1, I. Medugorac2,
N.А. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail olechka1808@list.ru, horarka@yandex.ru ( corresponding author), asnd@mail.ru, anastastasiya93@mail.ru, n_zinovieva@mail.ru;
2Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Germany, 80539 Munich, Veterinaerstr. 13, e-mail elisabeth.kunz@gen.vetmed.uni-muenchen.de, u.maulik@gen.vetmed.uni-muenchen.de, ivica.medjugorac@gen.vetmed.uni-muenchen.de;
3Gene Center, Ludwig-Maximilians-University, (LMU) Munich, Germany, 80539 Munich, Veterinaerstr. 13, e-mail krebs@genzentrum.lmu.de

ORCID:
Koshkina O.A. orcid.org/0000-0003-4830-6626
Krebs S. orcid.org/0000-0001-5112-9507
Deniskova T.E. orcid.org/0000-0002-5809-1262
Solovieva A.D. orcid.org/0000-0003-2628-9554
Dotsev A.V. orcid.org/0000-0003-3418-2511
Medugorac I. orcid.org/0000-0002-6891-3039
Kunz E. orcid.org/0000-0002-6949-4120
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Upadhyay M. orcid.org/0000-0002-4296-0021

Received October 1, 2021

Analysis of mitochondrial DNA (mtDNA) polymorphism is one of the most effective modern approaches to assess the genetic diversity of livestock species. The mtDNA sequencing is the most efficient approach for identifying mtDNA haplogroups in sheep (Ovis aries). Although this approach is widely used abroad, a systematic and comprehensive study of Russian sheep breeds with its aid has not yet been conducted. In this work, we analyzed the polymorphism of the complete sequence of the cytochrome b (CytB) gene in Russian sheep breeds of various origins. For the first time, we established the belonging of sheep from 25 Russian breeds to haplogroups and showed haplotype relationships between coarse wool, fine wool and semi-fine wool sheep breeds based on the analysis of polymorphism of the mitochondrial cytochrome b gene. The maternal variability of a wide range of local sheep breeds in comparison with transboundary breeds was assessed. In this research, we aimed to evaluate genetic diversity and to determine the haplotype variability and haplogroup belonging of Russian local sheep breeds based on the CytB gene sequences. The study was performed on 106 samples from 25 Russian sheep breeds in 2020-2021. Tissue samples (ear notches) were retrieved from the biological collection “Bank of genetic material of domestic and wild animal species and poultry” (registered by the Ministry of Education and Science of the Russian Federation No. 498808), which is established and maintained at the Ernst Federal Research Center for Animal Husbandry. The final study sample included nine fine-wool breeds, including Baikal (n = 3), Dagestan Mountain (n = 4), Groznensk (n = 5), Kulundin (n = 5), Manych Merino (n = 5), Salsky (n = 5), Soviet Merino (n = 3), Stavropol (n = 5) and Volgograd (n = 5); five semi-fine wool breeds, including Altai mountain(n = 5), Kuibyshev (n = 1), North Caucasian meat-wool (n = 5), Russian long-haired (n = 3) and Tsigai (n = 2); eleven coarse-wool breeds, including Romanov (n = 3), Andean black (n = 5), Buubei (n = 5), Karakul (n = 3), Karachaev (n = 5), Kuchugur (n = 3), Lezgin (n = 5), Tushin (n = 5), Tuva short-fat-tailed (n = 4), Edilbai (n = 5) and Kalmyk (n = 5). The complete sequences of the CytB gene of the studied sheep breeds were determined using the next generation sequencing (NGS) technology. To achieve this goal, three overlapping mtDNA fragments (overlapping region of more than 290 bp) with lengths of 6500, 5700, and 6700 bp were amplified. The obtained polymerase chain reaction (PCR) products were used to prepare libraries, which were then sequenced by the method of paired terminal reads of 300 bp each with a MiSeq System Sequencer (Illumina, Inc., USA). The CytB gene sequence was recovered from the complete mtDNA sequence after alignment, which was performed using the MUSCLE algorithm in the MEGA 7.0.26 software. All studied breeds had high haplotype (HD = 0.400-1,000) and nucleotide diversity (p = 0.00058-0.00760). In total, we identified 82 haplotypes. Tuva short-fat-tailed sheep breed was represented by only one haplotype. The AMOVA results showed that genetic diversity was mainly determined by intrabreed differences (90.55 %). Four haplogroups including A, B, C and D were identified in the study sample. Such a haplogroup diversity might be explained by a wide geographical range of habitats of the studied animals. The most frequent haplogroups in Russian local sheep breeds were B (n = 64) and A (n = 34), which are typical for sheep of European and Asian origin respectively. Seven animals were assigned to haplogroup C, and haplogroup D was represented by one animal. The results contribute to a deeper understanding of the processes of migration and settlement of domestic sheep in Eurasia.

Keywords: domestic sheep, mitochondrial DNA, cytochrome b gene, haplogroups, haplotypes.

 

REFERENCES

  1. Chessa B., Pereira F., Arnaud F., Amorim A., Goyache F., Mainland I., Kao R.R., Pemberton J.M., Beraldi D., Stear M.J., Alberti A., Pittau M., Iannuzzi L., Banabazi M.H., Kazwala R.R., Zhang Y.P., Arranz J.J., Ali B.A., Wang Z., Uzun M., Dione M.M., Olsaker I., Holm L.E., Saarma U., Ahmad S., Marzanov N., Eythorsdottir E., Holland M.J., Ajmone-Marsan P., Bruford M.W., Kantanen J., Spencer T.E., Palmarini M. Revealing the history of sheep domestication using retrovirus integrations. Science, 2009, 324(5926): 532-536 CrossRef
  2. Zeder M.A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proceedings of the National Academy of Sciences, 2008, 105(33): 11597-11604 CrossRef
  3. Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418(6898): 700-707 CrossRef
  4. Sheriff O., Alemayehu K. Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs: a review. Cogent Food & Agriculture, 2018, 4(1): 1459062 CrossRef
  5. Zhong Y., Tang Z., Huang L., Wang D., Lu Z. Genetic diversity of Procambarus clarkii populations based on mitochondrial DNA and microsatellite markers in different areas of Guangxi, China. Mitochondrial DNA. Part A,2020, 31(2): 48-56 CrossRef
  6. FAO. The state of food and agriculture: climate change, agriculture, and food security. Food and Agriculture Organization of the United Nations, Rome, 2016.
  7. Wei C., Wang H., Liu G., Wu M., Cao J., Liu Z., Liu R., Zhao F., Zhang L., Lu J., Liu C., Du L. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics, 2015, 16(1): 194 CrossRef
  8. Wang H., Zhang L., Cao J., Wu M., Ma X., Liu Z., Liu R., Zhao F., Wei C., Du L. Genome-wide specific selection in three domestic sheep breeds. PLoS ONE, 2015, 10(6): e0128688. CrossRef
  9. Fariello M.-I., Servin B., Tosser-Klopp G., Rupp R., Moreno C., International Sheep Genomics Consortium, San Cristobal M., Boitard S. Selection signatures in worldwide sheep populations. PLoS ONE, 2014, 9(8): e103813 CrossRef
  10. Deniskova T.E., Dotsev A.V., Fornara M.S., Sermyagin A.A., Reyer H., Wimmers K., Brem G., Zinov'eva N.A. The genomic architecture of the Russian population of Saanen goats in comparison with worldwide Saanen gene pool from five countries. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(2): 285-294 CrossRef
  11. Kostyunina O.V., Abdel'manova A.S., Martynova E.U., Zinov'eva N.A. Search for genomic regions carrying the lethal genetic variants in the Duroc pigs. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(2): 275-284 CrossRef
  12. Sulimova G.E., Stolpovskii Yu.A., Ruzina M.N., Zakharov-Gezekhus I.A. V sbornike: Bioraznoobrazie i dinamika genofondov [In: Biodiversity and gene pool dynamics]. Moscow, 2008: 211-214 (in Russ.).
  13. Qiao G., Zhang H., Zhu S., Yuan C., Zhao H., Han M., Yue Y., Yang B. The complete mitochondrial genome sequence and phylogenetic analysis of Alpine Merino sheep (Ovis aries). Mitochondrial DNA. Part B, Resources, 2020, 5(1): 990-991 CrossRef
  14. Doyle J.J., Gaut B.S. Evolution of genes and taxa: a primer. Plant Molecular Biology, 2000, 42(1): 1-23.
  15. Knowlton N., Weigt L. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1998, 265: 2257-2263  CrossRef
  16. Cox A.J., Hebert P.D. Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Molecular Ecology, 2001, 10(2): 371-386 CrossRef
  17. Wares J.P., Cunningham C.W. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 2001, 55(12): 2455-2469 CrossRef
  18. Guo J., Du L.-X., Ma Y.-H., Guan W.-J., Li H.-B., Zhao Q.-J., Li X., Rao S.-Q. A novel maternal lineage revealed in sheep (Ovis aries). Animal Genetics, 2005, 36(4): 331-336 CrossRef
  19. Wood N.J., Phua S.H. Variation in the control region sequence of the sheep mitochondrial genome. Animal Genetics, 1996, 27(1): 25-33 CrossRef
  20. Hiendleder S., Mainz K., Plante Y., Lewalski H. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep. The Journal of Heredity, 1998, 89(2): 113-120 CrossRef
  21. Pedrosa S., Uzun M., Arranz J.J., Gutiérrez-Gil B., San Primitivo F., Bayón Y. Evidence of three maternal lineages in Near Eastern sheep supporting multiple domestication events. Proceedings of the Royal Society B: Biological Sciences, 2005, 272(1577): 2211-2217 CrossRef
  22. Pereira F., Davis S.J., Pereira L., McEvoy B., Bradley D.G., Amorim A. Genetic signatures of a Mediterranean influence in Iberian Peninsula sheep husbandry. Molecular Biology and Evolution, 2006, 23(7): 1420-1426 CrossRef
  23. Tapio M., Marzanov N., Ozerov M., Cinkulov M., Gonzarenko G., Kiselyova T., Murawski M., Viinalass H., Kantanen J. Sheep mitochondrial DNA variation in European, Caucasian, and Central Asian areas. Molecular Biology and Evolution, 2006, 23(9): 1776-1783 CrossRef
  24. Meadows J.R., Cemal I., Karaca O., Gootwine E., Kijas J.W. Five ovine mitochondrial lineages identified from sheep breeds of the near East. Genetics, 2007, 175(3): 1371-1379 CrossRef
  25. Meadows J.R., Hiendleder S., Kijas J.W. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity, 2011, 106(4): 700-706 CrossRef
  26. Meadows J.R., Li K., Kantanen J., Tapio M., Sipos W., Pardeshi V., Gupta V., Calvo J.H., Whan V., Norris B., Kijas J.W. Mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe. The Journal of Heredity, 2005, 96(5): 494-501 CrossRef
  27. Lv F.-H., Peng W.-F., Yang J., Zhao Y.-X., Li W.-R., Liu M.-J., Ma Y.-H., Zhao Q.-J., Yang G.-L., Wang F., Li J.-Q., Liu Y.-G., Shen Z.-Q., Zhao S.-G., Hehua E., Gorkhali N.A., Farhad Vahidi S.M., Muladno M., Naqvi A.N., Tabell J., Iso-Touru T., Bruford M.-W., Kantanen J., Han J.-L., Li M.-H. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Molecular Biology and Evolution, 2015, 32(10): 2515-2533 CrossRef
  28. Pardeshi V.C., Kadoo N.Y., Sainani M.N., Meadows J.R., Kijas J.W., Gupta V.S. Mitochondrial haplotypes reveal a strong genetic structure for three Indian sheep breeds. Animal Genetics, 2007, 38(5): 460-466 CrossRef
  29. Zhao E., Yu Q., Zhang N., Kong D., Zhao Y. Mitochondrial DNA diversity and the origin of Chinese indigenous sheep. Tropical Animal Health and Production, 2013, 45(8): 1715-1722 CrossRef
  30. Zeder M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proceedings of the National Academy of Sciences, 2008, 105(33): 11597-11604 CrossRef
  31. Liu J., Lu Z., Yuan C., Wang F., Yang B. Phylogeography and phylogenetic evolution in Tibetan sheep based on MT-CYB sequences. Animals, 2020, 10(7): 117 CrossRef
  32. Ul'yanov A.N., Kulikova A.Ya. Ovtsy, kozy, sherstyanoe delo, 2012, 1: 4-11 (in Russ.).
  33. Aboneev V.V. Dostizheniya nauki i tekhniki v APK, 2008, 10: 37-39 (in Russ.).
  34. Erokhin A.I., Karasev E.A., Erokhin S.A. Ovtsy, kozy, sherstyanoe delo, 2019, 3: 3-6 (in Russ.).
  35. Aboneev V.V., Kolosov Yu.A. Ovtsy, kozy, sherstyanoe delo, 2020, 1: 43-46 (in Russ.).
  36. Selionova M.I Zhivotnovodstvo i kormoproizvodstvo, 2019, 102(4): 272-276 (in Russ.).
  37. Lescheva M., Ivolga A. Current state and perspectives of sheep breeding development in Russian modern economic condition. Economics of Agriculture, 2015, 2(62): 467-480.
  38. Dunin I.M., Safina G.F., Chernov V.V., Grigoryan L.N., Khatataev S.A., Khmelevskaya G.N., Stepanova N.G., Pavlov M.B. V sbornike: Ezhegodnik po plemennoi rabote v ovtsevodstve i kozovodstve v khozyaistvakh rossiiskoi federatsii (2019 god) [In: Yearbook on breeding in sheep and goat on farms of the Russian Federation (2019)]. Moscow, 2020: 3-14 (in Russ.).
  39. Ernst L.K., Dmitriev N.G., Paronyan I.A. Geneticheskie resursy sel'skokhozyaistvennykh zhivotnykh v Rossii i sopredel'nykh stranakh [Genetic resources of farm animals in Russia and neighboring countries]. St. Petersburg, 1994 (in Russ.).
  40. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004, 32(5): 1792-1797 CrossRef
  41. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874 CrossRef
  42. Bandelt H.J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 1999, 16(1): 37-48 CrossRef
  43. Leigh J.W., Bryant D. Popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 2015, 6(9): 1110-1116 CrossRef
  44. Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 2017, 34(3): 772-773 CrossRef
  45. Akaike H. A new look at the statistical model identification. IEEE Trans Auto Control, 1974, 19(6): 716-723 CrossRef
  46. Excoffier L., Lischer H.E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010, 10(3): 564-567 CrossRef
  47. Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 2012, 61(3): 539-542 CrossRef
  48. Molecular evolution, phylogenetics and epidemiology. Available: http://tree.bio.ed.ac.uk/software/figtree. Accessed: 30.07.2021.
  49. Dotsev A.V., Kunz E., Shakhin A.V., Petrov S.N., Kostyunina O.V., Okhlopkov I.M., Deniskova T.E., Barbato M., Bagirov V.A., Medvedev D.G., Krebs S., Brem G., Medugorac I., Zinovieva N.A. The first complete mitochondrial genomes of snow sheep (Ovis nivicola) and thinhorn sheep (Ovis dalli) and their phylogenetic implications for the genus Ovis. Mitochondrial DNA Part B, 2019, 4(1): 1332-1333 (doi: 10.1080/23802359.2018.1535849">CrossRef
  50. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 2017, 34: 3299-3302 CrossRef
  51. Deniskova T.E., Abelmanova A.S., Dotsev A.V., Sambu-Khoo Ch.S., Reyer H., Selionova M.I., Fornara M.S., Wimmers K., Brem G., Zinovieva N.A. PSX-18 High-density genomic description of Russian native sheep breed of the Republic of Tyva. Journal of Animal Science, 2020, 98(4): 453-454 CrossRef
  52. Deniskova T.E., Selionova M.I., Gladyr' E.A., Dotsev A.V., Bobryshova G.T., Kostyunina O.V., Brem G., Zinov'eva N.A. Variability of microsatellites in sheep breeds raced in Russia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(6): 801-810 CrossRef
  53. Kandoussi A., Boujenane I., Auger C., Serranito B., Germot A., Piro M., Maftah A., Badaoui B., Petit D. The origin of sheep settlement in Western Mediterranean. Scientific Reports, 2020, 10(1): 10225 CrossRef
  54. Alonso R.A., Ulloa-Arvizu R., Gayosso-Vázquez A. Mitochondrial DNA sequence analysis of the Mexican Creole sheep (Ovis aries) reveals a narrow Iberian maternal origin. Mitochondrial DNA. Part A, 2017, 28(6): 793-800 CrossRef
  55. Oliveira J.A., Egito A.A.D., Crispim B.D.A., Vargas Junior F.M., Seno L.O., Barufatti A. Importance of naturalized breeds as a base for the formation of exotic sheep (Ovis aries) breeds in tropical altitude regions. Genetics and Molecular Biology, 2020, 43(2): e20190054 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)