PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1204eng

UDC: 636.2.034:636.087.8:579.6:577.2

Acknowledgements:
Supported financially from Russian Foundation for Basic Research, grant No. 18-016-00207

 

THE INFLUENCE OF A DIETARY Enterococcus faecium STRAIN-BASED ADDITIVE ON THE TAXONOMIC AND FUNCTIONAL CHARACTERISTICS OF THE RUMEN MICROBIOTA OF LACTATING COWS

E.A. Yildirim1 , G.Yu. Laptev1, L.A. Ilyina1, T.P. Dunyashev1, D.G. Tyurina1, V.A. Filippova1, E.A. Brazhnik1, N.V. Tarlavin1, A.V. Dubrovin1, N.I. Novikova1, V.V. Soldatova1, S.Yu. Zaitsev2

1JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail deniz@biotrof.ru ( corresponding author),lina@biotrof.ru, bea@biotrof.ru, dumova@biotrof.ru, novikova@biotrof.ru, tiurina@biotrof.ru, tarlav1995@biotrof.ru, dubrovin@biotrof.ru.
2Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail s.y.zaitsev@mail.ru

ORCID:
Yildirim E.A. orcid.org/0000-0002-5846-4844
Brazhnik E.A. orcid.org/0000-0003-2178-9330
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Tarlavin N.V. orcid.org/0000-0002-6474-9171
Ilyina L.A. orcid.org/0000-0003-2490-6942
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Dunyashev T.P. orcid.org/0000-0002-3918-0948
Novikova N.I. orcid.org/0000-0002-9647-4184
Tyurina D.G. orcid.org/0000-0001-9001-2432
Soldatova V.V. orcid.org/0000-0002-4984-9609
Filippova V.A. orcid.org/0000-0001-8789-9837
Zaitsev S.Yu. orcid.org/0000-0003-1533-8680

Received August 10, 2020

 

Today rations for dairy cows are designed to provide the highest growth rate and productivity in a short period of time. However, such intensive livestock farming affects, first of all, the health of animals, since metabolic pathways inherent in ruminants are disrupted. The use of 16S metagenomics approaches makes it possible to assess the genetic and metabolic diversity of the bovine microbiome, which allows identifying factors that can contribute to an increase in productivity and an improvement in the health of the host. In the feeding trial, dairy cows were fed with dietary probiotic Cellobacterin+ based on the Enterococcus faecium 1-35 strain (the winter-spring period of 2018, JSC PZ Plamya, Gatchinsky District, Leningrad Province). Two groups of ten Holsteinized black-and-white dairy cows (Bos taurus taurus) of the 2nd and 3rd lactation with an average annual milk yield of 7000-7500 kg were used. The basal diet was 10 kg compound feed, 2 kg yellow corn, 0.5 kg sunflower cake, 0.5 kg rapeseed cake, 1 kg hay, 25 kg grass silage, 1 kg beet molasses, and 0.2 kg MINVIT®-3 (Russia). In the morning, the test cows were fed with dietary Cellobacterin+ (OOO BIOTROF, St. Petersburg) at 40 g per cow. Cicatricial contents (10-50 g) were collected from three cows of each group at the end of the experiment. Fasting blood was taken for biochemical analysis from the tail vein with vacutainers. The blood was analyzed for total protein, total bilirubin, glucose, calcium, phosphorus, urea, reserve alkalinity, ketone bodies. The mass fraction of fat in milk was analyzed according to GOST 5867-90, protein according to GOST 23327-98, and the number of somatic cells according to GOST R 54761-2011. Total DNA from the studied samples was extracted using the Genomic DNA Purification Kit (Fermentas, Inc., Lithuania) according to the attached instructions. Amplification for subsequent NGS sequencing was run (a Veriti Thermal Cycler, Life Technologies, Inc., USA) using the eubacterial primers (IDT) 343F (5´-CTCCTACGGRRSGCAGCAG-3´) and 806R (5´-GGACTANVGGGTWTCTAAT-3´) flanking the V1V3 region of the 16S rRNA gene. Metagenomic sequencing (a MiSeq system, Illumina, Inc., USA) was performed with a MiSeq Reagent Kit v3 (Illumina, Inc., USA). Chimeric sequences were excluded from analysis using the USEARCH 7.0 program (http://drive5.com/usearch/). The processing of the obtained reads using the bioinformatics platform CLC Bio GW 7.0 (Qiagen, the Netherlands) included overlapping, quality filtering (QV > 15), and primer trimming. The taxonomic affiliation of microorganisms to genus was determined using the RDP Classifier program (http://rdp.cme.msu.edu/). Mathematical and statistical processing of the results was carried out using the software packages Microsoft Office Excel 2003, R-Studio (Version 1.1.453) (https://rstudio.com). The mean values (M) and standard errors of the means (±SEM) were calculated. The results were deemed significant at p < 0.05. Analysis of microbial β-diversity of the samples by the principal component method was performed according to the Weighted UniFrac PCoA Emperor method using the QIIME software package. Reconstruction and prediction of the functional content of the metagenome, gene families, and enzymes was performed using the PICRUSt2 software package (v.2.3.0). MetaCyc database (https://metacyc.org/) was used to analyze metabolic pathways and enzymes. Feeding the probiotic had a significant effect (p = 0.049) on an increase in milk yield, as well as on a decrease (p = 0.003) in the somatic cell number in milk by 38,000/ml per cow. The NGS sequencing provided a complete taxonomic and functional characterization of the cicatricial microbiota, including uncultivated representatives. Significant differences were found between the groups for 13 bacterial genera. In particular, in the rumen of cows treated with the probiotic Cellobacterin+, compared to the control group, a lower proportion of the order Clostridia were found, namely the bacteria of the genera Anaerofilum sp. (2.3 times lower, p ≤ 0.05) and Anaerostipes sp. (1.8 times lower, p ≤ 0.05) that produce lactate in the rumen as the end product of glucose metabolism. A decrease occurred in the abundance of the genera Campylobacter, Gemella, Mycoplasma, Shewanella (p ≤ 0.05), and Fusobacterium (including F. necrophorum) (p ≤ 0.001) among which pathogens are often found. Changes in the taxonomic structure of rumen microbiota as influenced by the probiotic were also associated with metabolic changes. The predicted functional potential of seven metabolic pathways was enhanced in cows fed Cellobacterin+ compared to the control animals. Thus, when fed Cellobacterin+, there was a 3.5-fold increase (p ≤ 0.05) in the predicted level of microbiome metabolic capabilities associated with the synthesis of glyoxylate from allantoin, and 2.3-fold increase (p ≤ 0.05) in the biosynthesis of propionate from L-glutamate. These findings allow us to suggest an important role of the biological product Cellobacterin+ for maintaining the homeostasis of metabolic processes.

Keywords: biologicals, Cellobacterin+, lactating cows, rumen, 16S metagenomics, NGS sequencing, metabolism.

 

 

REFERENCES

  1. Freetly H.C., Dickey A., Lindholm-Perry A.K., Thallman R.M., Keele J.W., Foote A.P., Wells J.E. Digestive tract microbiota of beef cattle that differed in feed efficiency. Journal of Animal Science, 2019, 98(2): skaa008 CrossRef
  2. Wang L., Zhang K., Zhang C., Feng Y., Zhang X., Wang X., Wu G. Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Scientific Reports, 2019, 9: 19620 CrossRef
  3. Li F., Li C., Chen Y., Liu J., Zhang C., Irving B., Fitzsimmons C., Plastow G., Guan L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 2019, 7: 92 CrossRef
  4. Chaucheyras-Durand F., Ossa F. REVIEW: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. The Professional Animal Scientist, 2014, 30(1): 1-12 CrossRef
  5. Xue M.Y., Sun H.Z., Wu X.H., Liu J.-X., Gua L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome, 2020, 8: 64 CrossRef
  6. Il'ina L.A. Vestnik myasnogo skotovodstva, 2017, 3(99): 128-133 (in Russ.).
  7. Schingoethe D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. Journal of Dairy Science, 2017, 100(12): 10143-10150 CrossRef
  8. Uyeno Y., Shigemori S., Shimosato T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 2015, 30(2): 126-132 CrossRef
  9. Difford G.F., Plichta D.R., Løvendahl P., Lassen J., Noel S.J., Højberg O., Wright A.G., Zhu Z., Kristensen L., Nielsen H.B., Guldbrandtsen B., Sahana G. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLOS Genetics, 2018, 14(10): e1007580 CrossRef
  10. Matthews C., Crispie F., Lewis E., Reid M., O'Toole P.W., Cotter P.D. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 2019, 10(2): 115-132 CrossRef
  11. Ghorbani G.R., Morgavi D.P., Beauchemin K.A., Leedle J.A.Z. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal of Animal Science, 2002, 80(7): 1977-1985 CrossRef
  12. Uyeno Y., Shigemori S., Shimosato T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 2015, 30(2): 126-132 CrossRef
  13. Fernández S., Fraga M., Silveyra E., Trombert A.N., Rabaza A., Pla M., Zunino P. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Beneficial Microbes, 2018, 9(4): 613-624 CrossRef
  14. Laptev G.Yu., Novikova N.I., Iyldyrym E.A., Il'ina L.A., Tarlavin N.V. Mikrobiom sel'skokhozyaistvennykh zhivotnykh: svyaz' so zdorov'em i produktivnost'yu [Microbiome of farm animals: the effects on health and productivity]. St. Petersburg, 2020 (in Russ.).
  15. Arkhipov A.V., Levchenko V.I., Talanov G.A., Frolova L.A., Novikov V.E. Metody veterinarnoi klinicheskoi laboratornoi diagnostiki. Spravochnik [Methods of veterinary clinical laboratory diagnostics: Guidelines]. Moscow, 2004 (in Russ.).
  16. Kim B.-R., Shin J., Guevarra R., Lee J.-H., Kim D.-W., Seol K.-H., Lee J.-H., Kim H.B., Isaacson R.E. Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 2017, 27(12): 2089‐2093 CrossRef
  17. Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience, 2013, 2(1): 16 CrossRef
  18. Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 2020, 38: 685-688 CrossRef
  19. Caspi R., Billington R., Fulcher C.A., Keseler I.M., Kothari A., Krummenacker M., Latendresse M., Midford P.E., Ong Q., Ong W.K., Paley S., Subhraveti P., Karp P.D. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Research, 2018, 46(D1): 633-639 CrossRef
  20. Spaniol J.S., Oltramari C.E., Locatelli M., Volpato A., Campigotto G., Stefani L., Da Silva A.S. Influence of probiotic on somatic cell count in milk and immune system of dairy cows. Comparative Clinical Pathology, 2014, 24(3): 48-52 CrossRef
  21. Olchowy T.W.J., Soust M., Alawneh J. The effect of a commercial probiotic product on the milk quality of dairy cows. Journal of Dairy Science, 2019, 102(3): 2188-2195 CrossRef
  22. Oikonomou G., Machado V.S., Santisteban C., Schukken Y.H., Bicalho R.C. Microbial diversity of bovine mastitic milk as described by pyrosequencing of metagenomic 16s rDNA. PLoS One, 2012, 7(10): e47671 CrossRef
  23. Lebeer S., Vanderleyden J., De Keersmaecker S.C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Reviews Microbiology, 2010, 8(3): 171-184 CrossRef
  24. Klaenhammer T.R., Kleerebezem M., Kopp M.V., Rescigno M. The impact of probiotics and prebiotics on the immune system. Nature Reviews Immunology, 2012, 12(10): 728-734 CrossRef
  25. Rozenberg G.S. Samarskaya Luka: problemy regional'noi iglobal'noi ekologii, 2010, 19(2): 4-25 (in Russ.).
  26. Skopina M.Yu., Vasil'eva A.A., Pershina E.V., Pinevich A.V. Raznoobrazie malochislennosti: fenomen “Razrezhennoi bakterial'noi biosfery”. Mikrobiologiya, 2016, 85(3): 248-260 (in Russ.).
  27. Gasparic A., Marinsek-Logar R., Martin J., Wallace R.J., Nekrep F.V., Flint H.J. Isolation of genes encoding β-D-xylanase, β-D-xylosidase and a-L-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B14. FEMS Microbiology Letters, 1995, 125(2-3): 135-141 CrossRef
  28. Stevenson D.M., Weimer P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2007, 75(1): 165-174 CrossRef
  29. Bryant M.P., Small N., Bouma C., Chu H. Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. Journal of Bacteriology, 1958, 76(1): 15-23 CrossRef
  30. Blackburn T.H., Hungate R.H. Succinic acid turnover and propionate production in the bovine rumen. Applied Microbiology and Biotechnology, 1963, 11(2): 132-135.
  31. Reynolds C.K., Huntington G.B., Tyrrell H.F., Reynolds P.J. Net metabolism of volatile fatty acids, D-β-hydroxybutyrate, nonesterified fatty acids, and blood gases by portal-drained viscera and liver of lactating Holstein cows. Journal of Dairy Science, 1988 71(9): 2395-2405 CrossRef
  32. Bekele A.Z., Koike S., Kobayashi Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene‐based analysis. FEMS Microbiology Letters, 2010, 305(1): 49-57 CrossRef
  33. Zellner G., Stackebrandt E., Nagel D., Messner P., Weiss N., Winter J. Anaerofilum pentosovorans gen. nov., sp. nov., and Anaerofilum agile sp. nov., two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors. International Journal of Systematic and Evolutionary Microbiology, 1996, 46(4): 871-875 CrossRef
  34. Schwiertz A., Hold G.L., Duncan S.H. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Systematic and Applied Microbiology, 2002, 25(1): 46-51 CrossRef
  35. Russell J.B., Sharp W.M., Baldwin R.L. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. Journal of Animal Science, 1979, 48(2): 251-255 CrossRef
  36. Wang X., Li X., Zhao C., Hu P., Chen H., Liu Z., Liu G., Wang Z. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Applied and Environmental Microbiology, 2012, 78(7): 2386‐2392 CrossRef
  37. Goto H., Qadis A.Q., Kim Y.H., Ikuta K., Ichijo T., Sato S. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle. Journal of Veterinary Medical Science, 2016, 78(10): 1595-1600 CrossRef
  38. Neil S.D., Mackie D.P., Logan E.F. Campylobacter mastitis in dairy cows. Veterinary Record, 1982, 110(21): 505-506 CrossRef
  39. McGillivery D.J., Nicholls T.J., Hatch P.H. Isolation of Fusobacterium necrophorum from a case of bovine mastitis. Australian Veterinary Journal, 1984, 61(10): 325 CrossRef
  40. Pillai D.K., Amachawadi R.G., Baca G., Narayanan S., Nagaraja T.G. Leukotoxic activity of Fusobacterium necrophorum of cattle origin. Anaerobe, 2019, 56: 51-56 CrossRef
  41. Hoffer M.A. Bovine campylobacteriosis: a review. Canadian Veterinary Journal, 1981, 22(11): 327-330.
  42. Jayananda S., Gollol-Raju N.S., Fadul N. Gemella species bacteremia and stroke in an elderly patient with respiratory tract infection. Case Reports in Medicine, 2017, 2017: 1098527 CrossRef
  43. Caswell J.L., Archambault M. Mycoplasma bovis pneumonia in cattle. Animal Health Research Reviews, 2007, 8(2): 161-186 CrossRef
  44. Zhang F., Fang Y., Pang F. Rare Shewanella spp. associated with pulmonary and bloodstream infections of cancer patients, China: a case report. BMC Infectious Diseases, 2018, 18, 454 CrossRef
  45. Liu T., Yang Z., Zhang X., Han N., Yuan J., Cheng Y. 16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora. 3 Biotech, 2017, 7: 370 CrossRef
  46. Lebeer S., Bron P.A., Marco M.L., Van Pijkeren J.-P., O'Connell Motherway M., Hill C., Pot B., Roos S., Klaenhammer T. Identification of probiotic effector molecules: present state and future perspectives. Current Opinion in Biotechnology, 2018, 49: 217-223 CrossRef
  47. Lee D.K., Park S.Y., An H.M., Kim J.R., Kim M.Ji., Lee S.W., Cha M.K., Kim S.A., Chung M.J., Lee K.O., Ha N.J. Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora. Archives of Oral Biology, 2011, 56(10): 1047-1054 CrossRef
  48. Page J.A., Lubbers B., Maher J., Ritsch L., Gragg S.E. Investigation into the efficacy of Bdellovibrio bacteriovorus as a novel preharvest intervention to control Escherichia coli O157:H7 and Salmonella in cattle using an in vitro model. Journal of Food Protection, 2015, 78(9): 1745-1749 CrossRef
  49. Renaud D.L., Kelton D.F., Weese J.S., Noble C., Duffield T.F. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. Journal of Dairy Science, 2019, 102(5): 4498-4505 CrossRef
  50. Čepeljnik T., Zorec M., Kostanjšek R., Nekrep F.V., Marinšek-Logar R. Is Pseudobutyrivibrio xylanivorans strain Mz5T suitable as a probiotic? An in vitro study. Folia Microbiologica, 2003, 48(3): 339-345 CrossRef
  51. Cornick N.A., Jensen N.S., Stahl D.A., Hartman P.A., Allison M.J. Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(1): 87-93 CrossRef
  52. Prins R.A., Lankhorst A., van der Meer P., Van Nevel C.J. Some characteristics of Anaerovibrio lipolytica a rumen lipolytic organism. Antonie Van Leeuwenhoek, 1975, 41(1): 1-11 CrossRef
  53. Woo V., Alenghat T. Host-microbiota interactions: epigenomic regulation. Current Opinion in Immunology, 2017, 44: 52-60 CrossRef
  54. Galochkina V.P., Agafonova A.V., Galochkin V.A. The hypothesis of a specific relationship between peroxisomal, mitochondrial, and cytoplasmic processes in metabolic regulation of highly productive ruminants. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2018, 53(2): 223-234 CrossRef
  55. Belasco I.J. New nitrogen feed compounds for ruminants — a laboratory evaluation. Journal of Animal Science, 1954, 13: 601-610.
  56. Kurihara S., Oda S., Kato K., Kim H.G., Koyanagi T., Kumagai H., Suzuki H. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. Journal of Biological Chemistry, 2005, 280(6): 4602-4608 CrossRef
  57. Matsumoto D., Takagi M., Fushimi Y., Okamoto K., Kido M., Ryuno M., Imura Y., Matsunaga M., Inokoshi K., Shahada F., Deguchi E. Effects of gamma-aminobutyric acid administration on health and growth rate of group-housed Japanese black calves fed using an automatic controlled milk feeder. Journal of Veterinary Medical Science, 2009, 71(5): 651-656 CrossRef
  58. Cho Y.R., Chang J.Y., Chang H.C. Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. World Journal of Microbiology and Biotechnology, 2007, 17(1): 104-109.
  59. Park K.B., Ji G.E., Park M.S., Oh S.H. Expression of rice glutamate decarboxylase in Bifidobacterium longum enhances gamma-aminobutyric acid production. Biotechnology Letters, 2005, 27(21): 1681-1684 CrossRef
  60. Nanninga, H.J., Drent W.J., Gottschal J.C. Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Archives of Microbiology, 1987, 147(2): 152-157.
  61. Buckel W. Unusual enzymes involved in five pathways of glutamate fermentation. Applied Microbiology and Biotechnology, 2001, 57(3), 263-273 CrossRef
  62. Kleiber M., Black A.L., Brown M.A., Tolbert B.M. Propionate as a precursor of milk constituents in the intact dairy cow. Journal of Biological Chemistry, 1953, 203(1): 339-346.
  63. Kunita N. Bacterial oxidation of phenylacetic acid. I. The pathway through homoprotocatechuic acid. Medical Journal of Osaka University, 1955, 6: 697-702.
  64. Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences USA, 2010, 107(32): 14390-14395 CrossRef
  65. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry (5th ed.). NY, W.H. Freeman and Company, 2002.

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)