PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1090eng

UDC: 638.123:575.2

Acknowledgements:
Supported financially by the Russian Ministry of Science and Higher Education within theme No. 0445-2019-0024

 

POLYMORPHIC STR MARKERS AS A TOOL FOR POPULATION-GENETIC STUDIES OF Apis mellifera HONEYBEES (review)

O.Yu. Fomenko , M.S. Fornara, A.V. Dotsev

Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail fomenych@rambler.ru ( corresponding author), margaretfornara@gmail.com, asnd@mail.ru

ORCID:
Fomenko O.Yu. orcid.org/0000-0001-7852-3790
Dotsev A.V. orcid.org/0000-0003-3418-2511
Fornara M.S. orcid.org/0000-0002-8844-177X

Received July 21, 2020

 

The relevance of honey bee biology comprehensive study is increasing every year. Primarily, this is caused by the decline of honey bee populations which occurs all over the world including the Russian Federation. Historically, the Europe and Africa continents were the habitat of the only representative of genus Apis, the honey bee Apis mellifera from which a significant number of freely interbreeding races (subspecies) derived during evolution. Nowadays, due to human introduction of honey bees to other continents, Apis mellifera are found all around the world. The loss of unique gene pools and purebred status of native honey bee subspecies due to uncontrolled hybridization is a matter of great concern worldwide (P. de la Rúa et al., 2009). Therefore, evolutionary relationships and population genetics of A. mellifera, genetic control of domestic and imported breeding stock purity, breed authentication, genome-wide association mapping for traits of apicultural interest (e.g., queen performance, flight activity, honey and wax productivity, resistance to parasites, winter hardiness, royal jelly components, bee venom, etc.), and breeding value estimation are the key points of approach to biodiversity conservation in honey bees. The set of parameters characteristic of the population/line as a whole is the necessary base to preserve and maintain polymorphism as a component of population stability (N.I. Krivtsov et al., 2011). Genetic structure of breeding populations and relations between geographically isolated populations are relevant to characterize breed gene pool and optimize selection programs. The paper discusses general aspects of microsatellite structure, the main models of evolution (H. Fan et al., 2007) and putative mechanisms of origin in eukaryotic genomes (A.V. Omelchenko, 2013). Microsatellites are tandem repeats of short (2-6 bp) noncoding sequences that are dispersed throughout the nuclear genome (W.S. Sheppard et al., 2000). Microsatellites are located in both protein-coding and non-coding regions, including regulatory sequences (I. López-Flores et al., 2012). It is believed that microsatellites emerge and spread via formation of various non-canonical DNA structures that favor the slipping of replication forks (R.D. Wells, 1996). Microsatellite loci are a very convenient tool to analyze the genetic structure of populations, estimate genomic inbreeding and the level of heterozygosity, calculate genetic similarity coefficients, and determine the level of introgression. This paper overviews the use of STR markers for reconstruction of the honey bee evolutionary history. The principal research papers on population genetics of various A. mellifera subspecies from Europe, Asia, America, and Africa are comsidered. Special attention is paid to the Russian honey bee breeds and populations. To summarize, the STR markers due to the large number of alleles, the high frequency of mutational events and codominant type of inheritance continue to be extremely powerful tool for genomic mapping, verification of the genomic authenticity, and in genetic and evolutionary studies of populations.

Keywords: honey bee, microsatellite markers, STR markers, evolution, population genetics, gene pool, introgression.

 

REFERENCES

  1. Aizen M.A., Garibaldi L.A., Cunningham S.A., Klein A.M. How much does agriculture depend on pollinators? Lesson from long-term trends in crop production. Annals of Botany, 2009, 103(9): 1579-1588 CrossRef
  2. Potts S.G., Roberts S.P., Dean R., Marris G., Brown M.A., Jones R., Neumann P., Settele J. Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 2010, 49(1): 15-22 CrossRef
  3. vanEngelsdorp D., Traynor K.S., Andree M., Lichtenberg E.M., Chen Y., Saegerman C., Cox-Foster D.L. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS ONE, 2017, 12(7): e0179535 CrossRef
  4. Wallberg A., Han F., Wellhagen G., Dahle B., Kawata M., Haddad N., Simões Z.L.P., Allsopp M.H., Kandemir I., De la Rúa P., Pirk C.W., Webster M.T. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 2014, 46: 1081-1088 CrossRef
  5. Chauzat M.P., Martel A.-C., Zeggane S., Drajunudel, Schurr F., Clément M.-C., Ribière-Chabert M., Aubet M., Faucon J.-P. A case control study and a survey on mortalities of honey bee colonies (Apis mellifera) in France during the winter of 2005-2006. Journal of Apicultural Research, 2010, 49(1): 40-51 CrossRef
  6. EPILOBEE Consortium, Chauzat M.P., Jacques A., Laurent M., Bougeard S., Hendrikx P., Ribière-Chabert M. Risk indicators affecting honeybee colony survival in Europe: one year of surveillance. Apidologie, 2016, 47(3): 348-378 CrossRef
  7. Johnson R.M., Ellis M.D., Mullin C.A., Frazier M. Pesticides and honey bee toxicity — USA. Apidologie, 2010, 41(3): 312-331 CrossRef
  8. vanEngelsdorp D., Meixner M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 2010, 103(Suppl.): S80-S95 CrossRef
  9. Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.-L., Jiang H., Kanost M., Thompson G.J., Z. Zou, Hultmark D. Immune pathways and defense mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15(5): 645-656 CrossRef
  10. DeGrandi-Hoffman G., Chen Y. Nutrition, immunity and viral infections on honey bees. Current Opinion in Insect Science, 2015, 10: 170-176 CrossRef
  11. Larsen A., Reynaldi F.J., Guzmán-Novoa E. Fundamentals of the honey bee (Apis mellifera) immune system. Review. Revista Mexicana de Ciencias Pecuarias, 2019, 10(3): 705-728 CrossRef
  12. Tsuruda J.M., Harris J.W., Bourgeois L., Danka R.G., Hunt G.J. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS ONE, 2012, 7(11): e48276 CrossRef
  13. Gisder S., Schüler V., Horchler L.L., Groth D., Genersch E. Long-term temporal trends of Nosema spp. infection prevalence in northeast Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Frontiers in Cellular and Infection Microbiology, 2017, 7: 301 CrossRef
  14. Nazzi F., Annoscia D., Caprio E., Di Prisco G., Pennacchio F. Honeybee immunity and colony losses. Entomologia, 2014, 2(2) CrossRef
  15. Smith K.M., Loh E.H., Rostal M.K., Zambrana-Torrelio C.M., Mendiola L., Daszak P. Pathogens, pests, and economics: drivers of honey bee colony declines and losses. EcoHealth, 2014, 10(4): 434-445 CrossRef
  16. Rosenkranz P., Aumeier P., Ziegelmann B. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 2010, 103(Suppl.): S96-S119 CrossRef
  17. Rangel J., Baum K., Rubink W.L., Coulson R.N., Johnston J.S., Traver B.E. Prevalence of Nosema species in a feral honey bee population: a 20-year survey. Apidologie, 2016, 47: 561-571 CrossRef
  18. Krivtsov N.I. Materialy Mezhdunarodnoi konferentsii «Pchelovodstvo — XXI vek. Temnaya pchela (Apis mellifera L.) v Rossii» [Proc. Int. Conf. «Beekeeping — the XXI century. Dark bee (Apis mellifera L.) in Russia»]. Moscow, 2008: 22-27 (in Russ.).
  19. Sattarov V.N. Pchelovodstvo, 2012, 9: 12-13 (in Russ.).
  20. Il'yasov R.A., Poskryakov A.V., Nikolenko A.G. Biomika, 2017, 9(2): 71-90 (in Russ.).
  21. Jensen A.B., Palmer K.A., Boomsa J.J., Pedersen B.V. Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honey bee, Apis mellifera mellifera, in north west Europe. Molecular Ecology, 2005, 14: 93-106 CrossRef
  22. Kolbina L.M., Nepeivoda S.N. Pchelovodstvo, 2009, 5: 6-7 (in Russ.).
  23. Borodachev A.V., Savushkina L.N. Pchelovodstvo, 2012, 4: 3-5 (in Russ.).
  24. Borodachev A.V., Savushkina L.N. Materialy regional’noi nauchno-prakticheskoi konferentsii «Sovremennoe sostoyanie i perspektivy razvitiya pchelovodstva v Sibiri» [Proc. Regional Conf. «Current state and prospects of beekeeping in Siberia»]. Krasnoyarsk, 2015: 24-29 (in Russ.).
  25. Il'yasov R.A., Poskryakov A.V., Nikolenko A.G. Biomika, 2017, 9(2): 83-90 (in Russ.).
  26. Engel M.S. The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research, 1999, 8(2): 165-196.
  27. Meixner M.D., Leta M.A., Koeniger N., Fuchs S. The honey bees of Ethiopia represent a new subspecies of Apis melliferaApis mellifera simensis n. spp. Apidologie, 2011, 42: 425-437 CrossRef
  28. Cridland J.M., Tsutsui N.D., Ramírez S.R. The complex demographic history and evolutionary origin of the Western honey bee, Apis mellifera. Genome Biol. Evol., 2017, 9(2): 457-472 CrossRef
  29. Pinto M.A., Henriques D., Chávez-Galarza J., Kryger P., Garnery L., van der Zee R., Dahle B., Soland-Reckeweg G., de la Rúa P., Dall’ Olio R., Carreck N.L., Johnson J.S. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. Journal of Apicultural Research, 2014, 53(2): 269-278 CrossRef
  30. Soland-Reckeweg G., Heckel G., Neumann P., Fluri P., Excoffier L. Gene flow in admixed populations and implications for the conservation of the Western honey bee, Apis mellifera. Journal of Insect Conservation, 2009, 13: 317-328 CrossRef
  31. Oleksa A., Chybicki I., Tofilski A., Burczyk J. Nuclear and mitochondrial patterns of introgression into native dark bees (Apis mellifera mellifera) in Poland. Journal of Apicultural Research, 2011, 50(2): 116-129 CrossRef
  32. De la Rúa P., Jaffé R., Dall’Olio R., Muňnoz I., Serrano J. Biodiversity, conservation and current threats to European honeybees. Apidologie, 2009, 40: 263-284 CrossRef
  33. Meixner M.D., Costa C., Kryger P., Hatjina F., Bouga M., Ivanova E., Büchler R. Conserving diversity and vitality for honey bee breeding. Journal of Apicultural Research, 2010, 49(1): 85-92 CrossRef
  34. Jaffé R., Dietman V., Alssopp M., Costa C., Crew R., Dall’Olio R., De la Rúa P., El-Niweiri Mogbel A.A., Fries I., Kezic N., Meusel M., Paxton R.J., Shaibi T., Stolle E., Moritz R.F.A. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conservation Biology, 2009, 24(2): 583-591 CrossRef
  35. Kauhausen-Keller D., Keller R. Morphometrical control of pure race breeding of honeybee (Apis mellifera L.). Apidologie, 1994, 25(2): 133-143 CrossRef
  36. Maul V., Hähnle A. Morphometric studies with purebred stock of Apis mellifera carnica Pollmann from Hessen. Apidologie, 1994, 25: 119-132.
  37. Il'yasov R.A., Poskryakov A.V., Petukhov A.V., Nikolenko A.G. Genetika, 2016, 52(8): 931-943 CrossRef
  38. Rhymer J.M., Simberloff D. Extension by hybridization and introgression. The Annual Review of Ecology, Evolution, and Systematics, 1996, 27: 83-109 CrossRef
  39. Krivtsov N.I., Goryacheva I.I., Borodachev A.V. Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2011, 1: 51-54 (in Russ.).
  40. Graur D. Gene diversity in Hymenoptera. Evolution, 1985, 38: 190-199 CrossRef
  41. Pamilo P., Crozier R.H. Genic variation in male haploids under deterministic selection. Genetics, 1981, 98(1): 199-214.
  42. Pamilo P., Varvio-Aho S.-L., Pekkarinen A. Low enzyme variability in Hymenoptera as a consequence of haplodiploidy. Hereditas, 1978, 88(1): 93-99 CrossRef
  43. Shoemaker D.D., Costa J.T., Ross K.G. Estimates of heterozygosity in two social insects using a large number of electrophoretic markers. Heredity, 1992, 69: 573-582 CrossRef
  44. Rowe D.J., Rinderer T.E., Stelzer J.A., Oldroyd B.P., Crozier R.H. Seven polymorphic microsatellite loci in honeybees (Apis mellifera). Insectes Sociaux, 1997, 44: 85-93 CrossRef
  45. Jeffreys A.J., Wilson V., Thein S.L. Individual-specific “fingerprints” of human DNA. Nature, 1985, 316: 76-79 CrossRef
  46. Weber J.L., Wong C. Mutation of human short tandem repeats. Human Molecular Genetics, 1993, 2(8): 1123-1128 CrossRef
  47. Sheppard W.S., Smith D.R. Identification of African-derived bees in the Americas: a survey of methods. Annals of the Entomological Society of America, 2000, 93(2): 159-176 CrossRef
  48. López-Flores I., Garrido-Ramos M.A. The repetitive DNA content of eukaryotic genomes. Genome Dynamics, 2012, 7: 1-28 CrossRef
  49. Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 2004, 5: 435-445 CrossRef
  50. Rosenberg N.A., Pritchard J.K., Weber J.L., Cann H.M., Kidd K.K., Zhivotovsky L.A., Feldman M.W. Genetic structure of human populations. Science, 2002, 298(5602): 2381-2385 CrossRef
  51. Ellegren H. Microsatellite mutations in the germline: implication for evolutionary inference. Trends in Genetics, 2000, 16(12): 551-558 CrossRef
  52. SantaLucia J.Jr., Hicks D. The thermodynamics of DNA structural motifs. Annual Review of Biophysics and Biomolecular Structure, 2004, 33: 415-440 CrossRef
  53. Fan H., Chu J.-Y. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics, 2007, 5(1): 7-14 CrossRef
  54. Di Rienzo A., Peterson A.C., Garza J.C., Valdes A.M., Slatkin M., Freimer N.B. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 1994, 91(8): 3166-3170 CrossRef
  55. Kruglyak S., Durrett R.T., Schug M.D., Aquadro C.F. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proceedings of the National Academy of Sciences, 1998, 95(18): 100774-10778 CrossRef
  56. Wells R.D. Molecular basis of genetic instability of triplet repeats. The Journal of Biological Chemistry, 1996, 271(6): 2875-2878 CrossRef
  57. Anselmi C., Bocchinfuso G., De Santis P., Savino M., Scipioni A. A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability. Biophysical Journal, 2000, 79(2): 601-613 CrossRef
  58. Owczarzy R., Vallone P.M., Gallo F.J., Paner T.M., Lane M.J., Benight A.S. Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers, 1997, 44(3): 217-239 CrossRef
  59. Valdes A.M., Slatkin M., Freimer N.B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics, 1993, 133(3): 737-749.
  60. Kalyuzhnyi D.N., Bondarev F.S., Shchelkina A.K., Livshits M.A., Borisova O.F. Molekulyarnaya biologiya, 2008, 42(1): 693-700 (in Russ.).
  61. Siyanova E.Yu., Mirkin S.M. Molekulyarnaya biologiya, 2001, 35(2): 208-223 (in Russ.).
  62. Omel’chenko A.V. Molekulyarnaya kharakteristika lokusov, soderzhashchikh dinukleotidnye mikrosatellity, genoma partenogeneticheskoi yashcheritsy Darevsia unisexualis: monografiya [Molecular characterization of dinucleotide microsatellite loci in the genome of parthenogenetic lizard Darevsia unisexualis: monograph]. Moscow, 2013 (in Russ.).
  63. Sturzeneker R., Haddar L.A., Bevilacqua A.U., Simpson A.J.G., Pena S.D.J. Polarity of mutations in tumor-associated microsatellite instability. Human Genetics, 1998, 102: 231-235 CrossRef
  64. Coloson I., Goldstein D.B. Evidence for complex mutations at microsatellite loci in Drosophilla. Genetics, 1999, 152(2): 617-627.
  65. Orti G., Pearse D.E., Avise J. Phylogenetic assessment of length variation at a microsatellite locus. Proceedings of the National Academy of Sciences, 1997, 94(20): 10745-10749 CrossRef
  66. Zimnitskii A.N., Bashkatov S.A., Urazbaev V.N. Tandemnye povtory DNK i kontseptsiya matrichnogo sinteza proteoglikanov [Tandem DNA repeats and the concept of matrix synthesis of proteoglycans]. Moscow, 2005 (in Russ.).
  67. Neff B.D., Gross M.R. Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats. Evolution, 2001, 55(9): 1717-1733 CrossRef
  68. Zhivotovskii L.A. Vestnik VOGiS, 2006, 10(1): 74-96 (in Russ.).
  69. Sharma P.C., Grover A., Kahl G. Mining microsatellites in eukaryotic genomes. Trends in Biotechnology, 2007, 25(11): 490-498 CrossRef
  70. Crozier R.H., Pamilo P. Evolution of social insect colonies. Sex allocation and kin-selection. Oxford University Press, UK, 1996.
  71. Davis S.K., Strassmann J.E., Hughes C., Pletscher L.S., Templeton A.R. Population structure and kinship in Polistes (Hymenoptera, Vespidae): an analysis using ribosomal DNA and protein electrophoresis. Evolution, 1990, 44: 1242-1253 CrossRef
  72. Estoup A., Solignac M., Harry M., Cornuet J.M. Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Research, 1993, 21(6): 1427-1431 CrossRef
  73. Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E., Estoup A., Garnery L., Haberl M., Cornuet J.-M. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera) genome. Molecular Ecology Notes, 2003, 3(2): 307-311 CrossRef
  74. Solignac M., Vautrin D., Baudry E., Mougel F., Loiseau A., Cornuet J.-M. A microsatellite-based linkage map of the honeybee, Apis mellifera L. Genetics, 2004, 167(1): 253-262 CrossRef
  75. Archak S., Meduri E., Kumar P.S., Nagaraju J. InSatDb: a microsatellite database of fully sequenced insect genomes. Nucleic Acids Research, 2007, 35(Suppl_1): D36-D39 CrossRef
  76. Cornuet J.M., Piry S., Luikart G., Estoup A., Solignac M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics, 1999, 153(4): 1989-2000.
  77. Bodur C. Genetic structure analysis of honeybee populations based on microsatellites. Ph.D Thesis. Ankara, 2005.
  78. Clarke K.E., Rinderer T.E., Franck P., Quezada-Euán J.J.G., Oldroyd B.P. The Africanization of honey bees (Apis mellifera) of the Yucatan: a study of a massive hybridization event across time. Evolution, 2002, 52(7): 1462-1474 CrossRef
  79. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. Genetic structure and distinctness of Apis mellifera L. populations from Canary Islands. Molecular Ecology, 2001, 10(7): 1733-1742 CrossRef
  80. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. Microsatellite analysis of non-migratory colonies of Apis mellifera iberica from south-eastern Spain. Journal of Zoological Systematics and Evolutionary Research, 2002, 40(3): 164-168 CrossRef
  81. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism. Genetics Selection Evolution, 2003, 35: 339-350 CrossRef
  82. Estoup A., Garnery L., Solignac M., Cornuet J.M. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics, 1995, 140(2): 679-695.
  83. Franck P., Garnery L., Solignac M., Cornuet J.M. The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution, 1998, 52(4): 1119-1134 CrossRef
  84. Franck P., Garnery L., Celebrano G., Solignac M., Cornuet J.-M. Hybrid origins of honey bees from Italy (Apis mellifera mellifera) and Sicily (A. m. sicula). Molecular Ecology, 2000, 9(7): 907-921 CrossRef
  85. Sušnik S., Kozmus P., Poklukar J., Meglič V. Molecular characterisation of indigenous Apis mellifera carnica in Slovenia. Apidologie, 2004, 35(6): 623-636 CrossRef
  86. Franck P., Gernery L., Solignac M., Cornuet J.-M. Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 2000, 31(2): 167-180 CrossRef
  87. Franck P., Garnery L. Loiseau A., Oldroyd B.P., Hepburn H.R., Solignac M., Cornuet J.-M. Genetic diversity of the honey bee in Africa: microsatellite and mitochondrial data. Heredity, 2001, 86: 420-430 CrossRef
  88. Meixner M.D., Pinto M.A., Bouga M., Kryger P., Ivanova E., Fuchs S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research, 2013, 52(4): 1-28 CrossRef
  89. Palmer K.A., Oldroyd B.P. Evolution of multiple mating in the genus Apis. Apidologie, 2000, 31(2): 235-248 CrossRef
  90. Châline N., Ratnieks F.L.W., Burke T. Anarchy in the UK: Detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellites. Molecular Ecology, 2002, 11(9): 1795-1803 CrossRef
  91. Lattorff H.M.G., Moritz R.F.A., Crewe R.M. Solignac M. Control of reproductive dominance by the thelytoky gene in honeybees. Biology Letters, 2007, 3(3): 292-295 CrossRef
  92. Alqarni A.S., Hannan M.A., Owayss A.A., Engel M.S. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): their natural history and role in beekeeping. ZooKeys, 2011, 134: 83-98 CrossRef
  93. Alattal Y., AlGhamdi A., Alsharhi M. Population structure of the Yemeni honey bee (Apis mellifera jemenitica) entails an urgent conservation strategy in Saudi Arabia. Journal of Entomology, 2014, 11(3): 163-169 CrossRef
  94. Ghassemi-Khademi T., Rajabi-Maham H., Pashaei-Rad S. Genetic diversity evaluation of Persian honeybees (Apis mellifera meda) in North West of Iran, using microsatellite markers. Journal of Wildlife and Biodiversity, 2018, 2(2): 37-46 CrossRef
  95. Techer M.A., Clémencet J., Turpin P., Volbert N., Reynaud B., Delatte H. Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA. Apidologie, 2015, 46: 445-454 CrossRef
  96. Esnault O., Meenowa D., Sookar P., Chauzat M.-P., Delatte H. Spread and strain determination of Varroa destructor following its introduction to Mauritius and interactions with the bee louse Braula pretoriensis in honey bee colonies. Journal of Apicultural Research, 2019, 58(1): 75-83 CrossRef
  97. De la Rúa P., Galián J., Pedersen B.V., Serrano J. Molecular characterization and population structure of Apis mellifera from Madeira and the Azores. Apidologie, 2006, 37(6): 699-708 CrossRef
  98. Loucif-Ayad W., Achou M., Legout H., Alburaki M., Garnery L. Genetic assessment of Algerian honeybee populations by microsatellite markers. Apidologie, 2015, 46: 392-402 CrossRef
  99. Alburaki M., Bertrand B., Legout H., Moulin S., Alburaki A., Sheppard W.S., Garnery L. A fifth major genetic group among honeybees revealed in Syria. BMC Genetics, 2013, 14: 117 CrossRef
  100. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). I. Mitochondrial DNA. Genetics Selection Evolution, 1998, 30: S31-S47 CrossRef
  101. Kireeva T.N., Ostroverkhova N.V., Konusova O.L., Kucher A.N., Shazakhov I.V. Materialy Mezhdunarodnoi konferentsii «Kontseptual'nye i prikladnye aspekty nauchnykh issledovanii i obrazovaniya v oblasti zoologii bespozvonochnykh» [Proc. Int. Conf. «Conceptual and practical aspects of science and education in invertebrate zoology»]. Tomsk, 2015: 254-260 (in Russ.).
  102. Nikolenko A.G., Gataullin A.R., Karimova A.A. Biomika, 2016, 8(2): 82-83 (in Russ.).
  103. Kaskinova M.D., Il'yasov R.A., Poskryakov A.V., Nikolenko A.G. Genetika, 2015, 51(10): 1199-1202 CrossRef (in Russ.).
  104. Zinov'eva N.A., Krivtsov N.I., Fornara M.S., Gladyr' E.A., Borodachev A.V., Borodachev V.A., Berezin A.S., Lebedev V.I. Dostizheniya nauki i tekhniki APK, 2011, 11: 51-52 (in Russ.).
  105. Zinov'eva N.A., Krivtsov N.I., Fornara M.S., Gladyr' E.A., Borodachev A.V., Berezin A.S., Lebedev V.I. Microsatellites as a tool for evaluation of allele pool dynamics when creation of prioksky type of middle russian honey bee Apis mellifera. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 75-79 (in Russ.).
  106. Krivtsov N.I., Zinov'eva N.A., Borodachev A.V., Lebedev V.I., Fornara M.S. Vestnik FGBOU VPO RGATU, 2011, 4(2): 23-27 (in Russ.).
  107. Zinov'eva N.A., Soloshenko V.A., Fornara M.S., Shatokhin K.S., Kharchenko G.I., Borodachev A.V., Lebedev V.I., Gladyr' E.A., Goncharenko G.M.. Doklady RASKHN, 2013, 3: 40-43 (in Russ.).
  108. Fornara M.S., Kramarenko A.S., Svistunov S.V., Lyubimov E.M., Sokol'skii S.S., Zinov'eva N.A. Morphometric and molecular genetic differentiation of Apis mellifera caucasica L. honey bee lines reared in Sochi region.Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2015, 50(6): 776-784 CrossRef
  109. Fornara M.S., Kramarenko A.S., Sharov M.A., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK, 2016, 30(10): 101-104 (in Russ.).
  110. Ostroverkhova N.V., Konusova O.L., Kucher A.N., Kireeva T.N. Zoologicheskii zhurnal, 2016, 95(3): 307-313 CrossRef (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)