PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1061eng

UDC: 636.5:591.3:57.044

 

PRENATAL NUTRITION OF POULTRY AND ITS POSTNATAL EFFECTS (review)

A.M. Dolgorukova , V.Yu. Titov, V.I. Fisinin, A.A. Zotov

Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail anna.dolg@mail.ru (✉ сorresponding author), vtitov43@yandex.ru, olga@vnitip.ru, inkub@vnitip.ru

ORCID:
Dolgorukova A.M. orcid.org/0000-0002-9958-8777
Fisinin V.I. orcid.org/0000-0003-0081-6336
Titov V.Yu. orcid.org/0000-0002-2639-7435
Zotov A.A. orcid.org/0000-0001-9761-3804

Received December 12, 2019

 

Fast growth rate in modern meat-type poultry is accompanied by several metabolic disorders resulting from the discrepancy between embryonic and postembryonic growth and development. Prenatal period of avian ontogenesis is characterized by abrupt physiologic and metabolic alterations and hence any disturbance at this stage can affect the hatch efficiency and subsequent postnatal growth and productivity (E.T. Moran, 2007; V.L. Christensen et al., 2004). The embryonic development in eggs can be supported by the in ovo nutrition using natural nutrients (amino acids, carbohydrates, vitamins) as well as growth stimulators and hormones; this approach can also prepare the poults for the intense postnatal growth (P.R. Ferket, 2016). From the nutrigenomic point of view, the nutrients and bioactive substances can affect gene expression (V.I. Fisinin et al., 2006; L. Bordoni et al., 2019). The experiments with the in ovo nutrition proved that the injections of nutrients can affect physiological status of broiler embryos and hatched broiler chicks. E.g. the injections of carbohydrates enlarge the pool of energy available for the embryo and decreases the catabolism of proteins and lipids during the final stage of incubation, resulting in the increases in the weight of the hatched chicks and in postnatal growth rate, supported by better development of the gastrointestinal tract (R. Kornasio et al., 2011; R. Jhaet al., 2019). All amino acids are necessary for the developing embryo; the absence of any of the amino acids can disrupt protein synthesis and homeostasis in the embryo, resulting in poorer postnatal growth and development. A bulk of studies were published which demonstrated the positive effects of the in ovo injections of individual or mixed amino acids on postnatal growth rate (Y. Ohta et al., 2001; T.M. Shafey et al., 2014; L.L. Yu et al., 2018). Ca. 94 % of total metabolizable energy in the embryo is generated via the oxidation of fatty acids. These oxidative processes, in turn, generate substantial amounts of free radicals which can result in vast cellular damage (P. Surai and V.I. Fisinin, 2013; A. Yigit et al., 2014). The administration of vitamins with antioxidative activity (like С or E) during the embryonic period positively affected the postnatal development of the immune system in chicks (S.A. Selim et al., 2012; S. Nowaczewski et al., 2012). The administration of L-carnitine into the embryos was shown to enhance pre-hatch glucose utilization in the anaerobic conditions and postnatal growth in the chicks (T.M. Shafey et al., 2010; A.M. Dolgorukova, 2017). The in ovo nutrition can therefore be an instrument of significant improvement of the hatchability of the injected eggs and subsequent growth efficiency in hatched chicks, resulting in explicit economic effect (E.D. Peebles, 2018). It should, however, be noted that this technique has not still found application in the commercial poultry production and that for wider knowledge on the stimulating effects of different nutrients on the development of avian embryo further research is required.

Keywords: embryonic development, broilers, prenatal period, in ovo nutrition, amino acids, antioxidants, vitamin E, vitamin C, L-carnitine, growth rate.

 

REFERENCES

  1. Fisinin V.I. Mirovoe i rossiiskoe ptitsevodstvo: realii i vyzovy budushchego: monografiya [World and Russian poultry farming: realities and challenges of the future: monograph]. Moscow, 2019 (in Russ.).
  2. Druyan S. The effects of genetic line (broilers vs. layers) on embryo development. Poultry Science, 2010, 89: 1457-1467 CrossRef
  3. Zuidhof M.J., Schneider B.L., Carney V.L., Korver D.R., Robinson F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science, 2014, 93(12): 2970-2982 CrossRef
  4. Havenstein G.B., Ferket P.R., Qureshi M.A. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science, 2003, 82(10): 1500-1508 CrossRef
  5. Buzała M., Janicki B., Czarnecki R. Consequences of different growth rates in broiler breeder and layer hens on embryogenesis, metabolism and metabolic rate: A review. Poultry Science, 2015, 94(4): 728-733 CrossRef
  6. Fisinin V.I., Surai P.F., Papazyan T.G. Zhivotnovodstvo Rossii, 2006, 11: 21-23 (in Russ.).
  7. Bordoni L., Gabbianelli R. Primers on nutrigenetics and nutria(epi)genomics: Origins and development of precision nutrition. Biochimie, 2019, 160: 156-171 CrossRef
  8. Nagaeva E.V., Shiryaeva T.Yu. Problemy endokrinologii, 2010, 6: 32-40 (in Russ.).
  9. Koletzko B., Brands B., Poston L., Godfrey K., Demmelmair H. Early nutrition programming of long-term health. Proceedings of the Nutrition Society, 2012, 71(3), 371-378 CrossRef
  10. Kaneko K., Choudhuri S. Chapter 52. Epigenetics in reproduction and development. In: Reproductive and developmental toxicology (second edition). R.C. Gupta (ed.). Academic Press, UK, 2017: 1005-1021 CrossRef
  11. Ferket P.R. The potential of perinatal nutrition. The Proceedings of XXV World's Poultry Congress. N. Yang, L. Lian, J. Zheng, X. Liu, C. Wu (eds.). Beijing, China, 2016: 161-166.
  12. Boleli I.C., Morita V.S., Matos J.B., Thimotheo M., Almeida V.R. Poultry egg incubation: integrating and optimizing production efficiency. Brazilian Journal of Poultry Science, 2016, 18(spe): 1-16 CrossRef
  13. Moran E.T. Nutrition of the developing embryo and hatchling. Poultry Science, 2007, 86(5):1043-1049 CrossRef
  14. Christensen V., Wineland M.J., Yildirum I., Ort D.T., Mann K.M. Incubator temperature and oxygen concentration at the plateau stage affects intestinal maturation of turkey embryos. International Journal of Poultry Science, 2004, 3(6): 378-385 CrossRef
  15. Almeida V.R., Morita V.S., Sgavioli S., Vicentini T.I., Castiblanco D.M.C., Boleli I.C. Incubation temperature manipulation during fetal development reduces adiposity of broiler hatchlings. Poultry Science, 2016, 95(2): 316-324 CrossRef
  16. Piestun Y., Harel M., Barak M., Yahav S, Halevy O. Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. Journal of Applied Physiology, 2010, 106(1): 233-240 CrossRef
  17. Willemsen H., Debonne M., Swennen Q., Everaert N., Careghi C., Han H., Bruggeman V., Tona K., Decuypere E. Delay in feed access and spread of hatch: Importance of early nutrition. World’s Poultry Science Journal, 2010, 66(2): 177-188 CrossRef
  18. Ebrahimi M.R., Jafari Ahangari Y., Zamiri M.J., Akhlaghi A., Atashi H. Does preincubational in ovo injection of buffers or antioxidants improve the quality and hatchability in long-term stored eggs? Poultry Science, 2012, 91(11): 2970-2976 CrossRef
  19. Kornasio R., Halevy O., Kedar O., Uni Z. Effect of in ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poultry Science, 2011, 90(7): 1467-1477 CrossRef
  20. Jha R., Singh A.K., Yadav S., Berrocoso J.F.D., Mishra B. Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Frontiers in Veterinary Science, 2019, 6: 82 CrossRef
  21. Dolgorukova A.M., Gulyushin S.Yu., Sidorova L.I. Sposob povysheniya zhiznesposobnosti embrionov sel'skokhozyaistvennoi ptitsy. Patent na izobretenie. RUS 2616424 MPK A01K 41/00. Vseros. nauch.-issl. in-t ptitsevodstva (RU) № 2015149120. Zayavl. 16.11.2015. Opubl. 14.04.2017. Byul. № 11 [Method for increasing the viability of poultry embryos. Patent for an invention. RUS 2616424 MPK A01K 41/00. All-Russian Research Poultry Institute(RU) № 2015149120. Appl. 16.11.2015. Publ. 14.04.2017. Bull. № 11] (in Russ.).
  22. Zhai W., Rowe D.E., Peebles E.D. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poultry Science, 2011, 90(6): 1295-1301 CrossRef
  23. Christensen V.L., Wineland M.J., Fasenko G.M., Donaldson W.E. Egg storage effects on plasma glucose and supply and demand tissue glycogen concentrations of broiler embryos. Poultry Science, 2001, 80(12): 1729-1735 CrossRef
  24. Uni Z., Ferket P.R., Tako E., Kedar O. In ovo feeding improves energy status of late-term chicken embryos. Poultry Science, 2005, 84(5): 764-770 CrossRef
  25. Lu J.W., Mc Murtry J.P., Coon C.N. Developmental changes of plasma insulin, glucagon, insulin-like growth factors, thyroid hormones, and glucose concentrations in chick embryos and hatched chicks. Poultry Science, 2007, 86(4): 673-683 CrossRef
  26. Vieira S., Moran E. Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields. World’s Poultry Science Journal, 1999, 55(2): 125-142 CrossRef
  27. Willems E., Hu T.-T., Soler Vasco L., Buyse J., Decuypere E., Arckens L., Everaert N. Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model. PLoS ONE, 2014, 9(4): e94902 CrossRef
  28. Uni Z., Yadgary L., Roni Y. Nutritional limitations during poultry embryonic development. The Journal of Applied Poultry Research, 2012, 21(1): 175-184 CrossRef
  29. Uni Z., Tako E., Gal-Garber O., Sklan D. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poultry Science, 2003, 82(11): 1747-1754 CrossRef
  30. Gilbert E.R., Li H., Emmerson D.A., Webb K.E., Wong E.A. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poultry Science, 2007, 86(8): 1739-1753 CrossRef
  31. Salmanzadeh M., Ebrahimnezhad Y., Aghdam Shahryar H., Beheshti R. The effects of in ovo injection of glucose and magnesium in broiler breeder eggs on hatching traits, performance, carcass characteristics and blood parameters of broiler chickens. Arch. Geflugelkd., 2012, 76(4): 277-284.
  32. Dolgorukova A.M., Zotov A.A. Ptitsevodstvo, 2019, 3: 48-52 CrossRef (in Russ.).
  33. Dolgorukova A.M., Gulyushin S.Yu., Mikhaleva M.S. Veterinariya, zootekhniya i biotekhnologiya, 2019, 2: 34-38 CrossRef (in Russ.).
  34. Chen W., Wang R., Wan H.F., Xiong X.L., Peng P., Peng J. Influence of in ovo injection of glutamine and carbohydrates on digestive organs and pectoralis muscle mass in the duck. British Poultry Science, 2009, 50(4): 436-442 CrossRef
  35. Bhanja S.K., Mandal A.B., Agarwal S.K., Majumdar S. Effect of in ovo glucose injection on the post hatch-growth, digestive organ development and blood biochemical profiles in broiler chickens. The Indian Journal of Animal Sciences, 2008, 78(8): 869-872.
  36. Willems E., Wang Y., Willemsen H., Lesuisse J., Franssens L., Guo X., Koppenol A., Buyse J., Decuypere E., Evaraert N. Partial albumen removal early during embryonic development of layer-type chickens has negative consequences on laying performance in adult life. Poultry Science, 92(7): 1905-1915 CrossRef
  37. De Oliveira J.I., Uni Z., Ferket P.R. Important metabolic pathways in poultry embryos prior to hatch. World’s Poultry Science Journal, 2008, 64(4): 488-499 CrossRef
  38. Ohta Y., Kidd M.T., Ishibashi T. Embryo growth and amino acid concentration profiles of broiler breeder eggs, embryos, and chicks after in ovo administration of amino acids. Poultry Science, 2001, 80(10): 1430-1436 CrossRef
  39. Gaafar K. Effect of in-ovo injection of amino acids mixture in fertilized breeder’s eggs of Muscovy ducks on the performance of newly-hatched ducklings. Minufiya Vet. J., 2009, 6: 1-12.
  40. Gaafar K.M., Selim S.A., El-Ballal S.S. Effect of in-ovo administration with two levels of amino acids mixture on the performance of Muscovy ducks. Emirates Journal of Food and Agriculture, 2013, 25(1): 58-65 CrossRef
  41. Coskun I., Erener G., Sahin A., Karadavut U., Altop A., Okur A.A. Impacts of in ovo feeding of DL-methionine on hatchability and chick weight. Turkish Journal of Agriculture — Food and Science and Technology, 2014, 2(1): 47-50 CrossRef
  42. Tahmasebi S., Toghyani M. Effect of arginine and threonine administered in ovo on digestive organ developments and subsequent growth performance of broiler chickens. J. Anim. Physiol. Anim. Nutr., 2016, 100(5): 947-956 CrossRef
  43. Ohta Y., Tsushima N., Koide K., Kidd M.T., Ishibashi T. Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks. Poultry Science, 1999, 78(11): 1493-1498 CrossRef
  44. Bhanja S.K., Mandal A.B. Effect of in ovo injection of critical amino acids on pre- and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens, Asian-Australas. J. Anim. Sci., 2005, 18(4): 524-531 CrossRef
  45. Tong B.C., Barbul A. Cellular and physiological effects of arginine. Mini-Reviews in Medical Chemistry, 2004, 4(8): 823-832 CrossRef
  46. Titov V.Yu., Dolgorukova A.M., Fisinin V.I., Borhunova E.N., Kondratov G.V., Slesarenko N.A., Kochish I.I. The role of nitric oxide (NO) in the body growth rate of birds. World’s Poultry Science Journal, 2018, 74(4): 675-686 CrossRef
  47. Titov V.Y., Ivanova A.V., Osipov A.N., Dolgorukova A.M., Vertiprakhov V.G., Slesarenko N.N., Kochish I.I. Synthesis and metabolism of nitric oxide (NO) in chicken embryos and in the blood of adult chicken. Bulletin of Experimental Biology and Medicine, 2020, 168(3): 321-325 CrossRef
  48. Gao T., Zhao M.M., Li Y.J. Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. J. Anim. Physiol. Anim. Nutr., 2018, 102(1): 166-175 CrossRef
  49. Shafey T.M., Mahmoud A.H., Alsobayel A.A, Abouheif M.A. Effects of in ovo administration of amino acids on hatchability and performance of meat chickens. South African Journal of Animal Science, 2014, 44(2): 123-130.
  50. Yu L.L., Gao T., Zhao M.M., Lv P.A., Zhang L., Li J.L., Jiang Y., Gao F., Zhou G.H. Effects of in ovo feeding of L-arginine on breast muscle growth and protein deposition in post-hatch broilers. Animal, 2018, 12(11): 2256-2263 CrossRef
  51. Al-Daraji H.J., Al-Mashadani A.A., Al-Hayani W.K., Al-Hassani A.S., Mirza H.A. Effect of in ovo injection with L-arginine on productive and physiological traits of Japanese quail. South African Journal of Animal Science, 2012, 42(2): 139-145.
  52. Foye O.T., Ferket P.R., Uni Z. The effects of in ovo feeding arginine, hydroxy-methyl-butyrate, and protein on jejunal digestive and absorptive activity in embryonic and neonatal turkey poults. Poultry Science, 2007, 86(11): 2343-2349 CrossRef
  53. Subramaniyan S.A., Kang D.R., Park J.R., Siddiqui S.H., Ravichandrian P., Yoo D.J., Na C.S., Shim K.S. Effect of in ovo injection of L-arginine in different chicken embryonic development stages on post-hatchability, immune response, and Myo-D and myogenin proteins. Animals, 2019, 9(6): 357 CrossRef
  54. Cazzato D., Assi E., Moscheni C., Brunelli S., De Palma C., Cervia D., Perrotta C., Clementi E. Nitric oxide drives embryonic myogenesis in chicken through the upregulation of myogenic differentiation factors. Experimental Cell Research, 2014, 3(20): 269-280 CrossRef
  55. Elwan H.A.M., Elnesr S.S., Xu Q., Xie C., Dong X., Zou X. Effects of in ovo methionine-cysteine injection on embryonic development, antioxidant status, IGF-I and TLR4 gene expression, and jejunum histomorphometry in newly hatched broiler chicks exposed to heat stress during incubation. Animals, 2019, 9(1): 25 CrossRef
  56. Hartmann C., Wilhelmson M. The hen’s egg yolk: a source of biologically active substances. World’s Poultry Science Journal, 2001, 57(1): 13-28 CrossRef
  57. Şahan U., Ipek A., Sozcu A. Yolk sac fatty acid composition, yolk absorption, embryo development, and chick quality during incubation in eggs from young and old broiler breeders. Poultry Science, 2014, 93(8): 2069-2077 CrossRef
  58. Curai P., Fisinin V.I. Natural antioxidants in hens' embryogenesis and antistress defence in postnatal development (review). Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2013, 2: 3-18 CrossRef
  59. Yigit A.A., Panda A.K., Cherian G. The avian embryo and its antioxidant defense system. World’s Poultry Science Journal, 2014, 70(3): 563-574 CrossRef
  60. Selim S., Gaafar K., El-Ballal S. Influence of in-ovo administration with vitamin E and ascorbic acid on the performance of Muscovy ducks. Emirates Journal of Food and Agriculture, 2012, 24: 264-271.
  61. Salary J., Sahebi-Ala F., Kalantar M., Matin H.R.H. In ovo injection of vitamin E on post-hatch immunological parameters and broiler chicken performance. Asian Pacific Journal of Tropical Biomedicine, 2014, 4(suppl. 2): S616-S619CrossRef
  62. Nowaczewski S., Kontecka H., Krystianiak S. Effect of in ovo injection of vitamin C during incubation on hatchability of chickens and ducks. Folia Biologica (Krakow), 2012, 60(1-2): 93-97 CrossRef
  63. Zhu Y., Li S., Duan Y., Ren Z., Yang X., Yang X. Effects of in ovo feeding of vitamin C on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. British Journal of Nutrition, 2020, 124(9): 903-911 CrossRef
  64. Shafey T.M., Al-Batshan H.A., Al-Owaimer A.N., Al-Samawei K.A. Effects of in ovo administration of L-carnitine on hatchability performance, glycogen status and insulin-like growth factor-1 of broiler chickens. British Poultry Science, 2010, 51(1): 122-131 CrossRef
  65. Rabie M.H., Ismail F.S.A., Ahmed A.A.S. Effect of in ovo inection of L-carnitine at different incubational ages on egg hatchability in broiler breeders and post-hatch performance. Asian Journal of Animal and Veterinary Advances, 2015, 10(12): 875-884 CrossRef
  66. Dolgorukova A.M. Ptitsevodstvo, 2017, 1: 22-25 (in Russ.).
  67. Grozina A., Dolgorukova A. The in ovo application of L-carnitine during embryogenesis in meat-type chicken.The Proceedings of XXV World’s Poultry Congress. N. Yang, L. Lian, J. Zheng, X. Liu, C. Wu (eds.). Beijing, China, 2016: 583.
  68. Saeed M., Babazadeh D., Naveed M., Alagawany M., Abd El-Hack M.E., Arain M.A., Tiwari R., Sachan S., Karthik K., Dama K., Elnesr S.S., Chao S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. J. Sci. Food Agric., 2019, 99(8): 3727-3739 CrossRef
  69. Peebles E.D. In ovo applications in poultry: a review. Poultry Science, 2018, 97(7): 2322-2338 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)