PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1182eng

UDC: 637.03:573.6.086.83.001.26

Acknowledgements:
Proteomic study was performed using the equipment of the Center for Collective Use of the Federal Research Center of Biotechnology RAS (identifier RFMEFI62114Х0002).
Supported financially by the grant of the Russian Scientific Foundation (project No. 16-16-10073П)

 

GENERATION OF BIOACTIVE PEPTIDES IN MEAT RAW MATERIALS EXPOSED TO LYSATES OF BACTERIAL STARTER CULTURES

I.M. Chernukha1, N.G. Mashentseva1 , N.L. Vostrikova1, L.I. Kovalev2, M.A. Kovaleva2, D.A. Afanasev3

1Gorbatov Federal Center for Food Systems RAS, 26, ul. Talalikhina, Moscow, 109316 Russia, e-mail imcher@inbox.ru, natali-mng@yandex.ru ( corresponding author), n.vostrikova@@fncps.ru;
2Federal Research Center for Biotechnology, Bakh Institute of Biochemistry RAS, 33/2, Leninskii prosp., Moscow, 119071 Russia, e-mail kovalyov@inbi.ras.ru, m1968@mail.ru;
3Moscow State University of Food Industry, 11, Volokolamskoe sh., Moscow, 125080 Russia, e-mail dmitr.afanasjew2010@yandex.ru

ORCID:
Chernukha I.M. orcid.org/0000-0003-4298-0927
Kovaleva M.A. orcid.org/0000-0002-3486-2122
Mashentseva N.G. orcid.org/0000-0002-9287-0585
Kovalev L.I. orcid.org/0000-0001-6519-8247
Vostrikova N.L. orcid.org/0000-0002-9395-705X
Afanasev D.A. orcid.org/0000-0002-7463-4503

Received July 31, 20208

 

Nowadays, preparations based on bacterial lysates are mainly applied in medicine. In food industry, bacterial lysates are still not widely used, in particular for manufacturing meat functional foodstuff. Though their potential for functional foodstuff production is predictable, the efficiency and specificity of action which depend on the characteristics of the strain and the method of cell disintegration require study. A set of peptidases identified in starter cultures, in particular endo-peptidases, aminopeptidases, dipeptidases, tripeptidases, and proline-specific peptidases stimulate interest in the lysates of these microorganisms for food biotechnology. In this work, we have shown that lysates of Pediococcus pentosaceus 28, Staphylococcus carnosus 108, Lactobacillus curvatus 1, P. acidilactici 38, Lsakei 103, L. sakei 105, L. curvatus 2, L. acidophilus AT-41 that we obtained by physical destruction of bacterial cells have the widest spectrum of enzymes and biologically active substances. Our goal was to determine the biochemical composition and enzymatic activity of the lysates of starting bacterial cultures and their role in the formation of biologically active peptides in raw meat. The bacterial suspensions were exposed either to lysozyme treatment followed by separation of the extract from the cell debris by centrifugation, or to ultrasonic treatment to compare two methods of cell destruction. The physical method was proved to be the most effective. For biochemical characterization, the proteolytic, lipolytic and collagenase activities of the lysates, and the concentration of organic acids, proteins, and free amino acids were measured. Enzymatic activities of the lysates were determined using API®ZYM tests. The Lactobacillus curvatus 2, Lactobacillus acidophilus AT-41, Pediococcus acidilactici 38 and Staphylococcus carnosus 108 lysates showed the widest range of intracellular enzymes, including leucine and valine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, and b-galactosidase. The proteolytic activity was the highest in Staphylococcus carnosus 108 (115.94 proteolytic capability PC units per mg protein), Lactobacillus acidophilus AT-41 (66.7 PC units per mg protein), Lactobacillus curvatus 1 (91.03 PC units per mg protein), and Lactobacillus curvatus 2 (72.20 PC units per mg protein) as compared to other strains. The level of malic, lactic and succinic acids in the lysates varied in the range of 0.002-0.02, 0.02-0.06, and 0.2-0.9 mg/100 g, respectively. The highest enrichment in free amino acids with 13 AA detected out of 17 AA studied was characteristic of P. acidilactici 38 lysate while only 7 AA were detected in the L. sakei 105 lysate. A comparison of 2D electrophoregrams of fermented raw meat showed both general effects on reducing total proteins and the lysate-specific effects toward various proteins, e.g. formation of protein conjugates and cleavage of target proteins, in particular actin skeletal muscle. Therefore, lysates of the studied starter cultures can serve as a source of various enzymes for practical use in the food industry, for example to improve the functional, technological and biocorrective characteristics of meat products.

Keywords: lysates, starting cultures, enzymatic lysis, biologically active peptides, two-dimensional electrophoresis, IEF-PAGE, MALDI-TOF, mass spectrometry.

REFERENCES

  1. Chernukha I.M., Kotenkova E.A., Vasilevskaya E.R., Ivankin A.N., Lisitsyn A.B., Fedulova L.V. Voprosy pitaniya, 2020, 89(1): 37-45 CrossRef (in Russ.).
  2. Vostrikova N.L., Chernukha I.M. Identification of tissue-specific proteins and peptides forming innovative meat products corrective properties to confirm authenticity of meat raw materials. Foods and Raw Materials, 2018, 6(1): 201-209 CrossRef
  3. Marco M.L., Heeney D., Binda S., Cifelli C.J., Cotter P.D., Foligné B., Gänzle M., Kort R., Pasin G., Pihlanto A., Smid E.J., Hutkins R. Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 2017, 44: 94-102 CrossRef
  4. Al Alwan I., Khadora M., Amir L., Nasrat G., Omair A., Brown L., Al Dubayee M., Badri M. Turner syndrome genotype and phenotype and their effect on presenting features and timing of diagnosis. International Journal of Health Sciences, 2014, 8(2): 195-202 CrossRef
  5. Şanlier N., Gökcen B.B., Sezgin A.C. Health benefits of fermented foods. Review. Critical Reviews in Food Science and Nutrition, 2019, 59(3): 506-527 CrossRef
  6. Cooper G.M. The cell: a molecular approach. Sinauer Associates, Sunderland, Massachusetts, 2000.
  7. Vinogradov E., Sadovskaya I., Grard T., Murphy J., Mahony J., Chapot-Chartier M.-P., van Sinderen D. Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9. Carbohydrate Research, 2018, 461: 25-31 CrossRef
  8. Matthews A., Grimaldi A., Walker M., Bartowsky E., Grbin P.R., Jiranek V. Lactic acid bacteria as a potential source of enzymes for use in vinification. Applied and Environmental Microbiology, 2004, 70(10): 5715-5731 CrossRef
  9. Kunji E.R., Mierau I., Hagting A., Poolman B., Konings W.N. The proteolytic systems of lactic acid bacteria. Review. Antonie Van Leeuwenhoek, 1996, 70(2-4): 187-221 CrossRef
  10. Law J., Haandrikman A. Proteolytic enzymes of lactic acid bacteria. International Dairy Journal, 1997, 7(1): 1-11 CrossRef
  11. Kunji E.R., Mierau I., Poolman B., Konings W.N., Venema G., Kok J. Fate of peptides in peptidase mutants of Lactococcus lactis. Molecular Microbiology, 1995, 21(1): 123-131 CrossRef
  12. Savijoki K., Ingmer H., Varmanen P. Proteolytic systems of lactic acid bacteria. Review. Applied Microbiology and Biotechnology, 2006, 71(4): 394-406 CrossRef
  13. Jurkiewicz D., Zielnik-Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections. Review. Polish Journal of Otolaryngology, 2018, 72(5): 1-8 CrossRef
  14. Hugo W.B. The mode of action of antibacterial agents. The Journal of Applied Bacteriology, 1967, 30(1): 17-50 CrossRef
  15. Mehmeti I., Kiran F., Osmanagaoglu O. Comparison of three methods for determination of protein concentration in lactic acid bacteria for proteomics studies. African Journal of Biotechnology, 2011, 10(11): 2178-2185 CrossRef
  16. Vadehra D.V., Wallace D.L., Harmon L.G. Comparison of methods of extracting intracellular proteases from bacteria. Applied Microbiology, 1965, 13(6): 1010-1013.
  17. Kearney S.C., Dziekiewicz M., Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Review. Ann. Allergy Asthma Immunol., 2015, 114(5): 364-369 CrossRef
  18. Lei Y., Kuang S.-J., Liao C.-S. Effects of bacterial lysates and all trans-retinoic acid on airway inflammation in asthmatic mice. Chinese Journal of Contemporary Pediatrics, 2018, 20(6): 514-518 CrossRef (Chinese).
  19. Nicoletti G., Saler M., Tresoldi M.M., Faga A., Benedet M., Cristofolini M. Regenerative effects of spring water-derived bacterial lysates on human skin fibroblast in in vitro culture: preliminary results. Journal of International Medical Research, 2019, 47(11): 5777-5786 CrossRef
  20. Lombardi F., Palumbo P., Mattei A., Augello F.R., Cifone M.G., Giuliani M., Cinque B. Soluble fraction from lysates of selected probiotic strains differently influences re-epithelialization of HaCaT scratched monolayer through a mechanism involving nitric oxide synthase 2. Biomolecules, 2019, 9(12): 756 CrossRef
  21. Kim H., Kim H.R., Jeong B.J., Lee S.S., Kim T.-R., Jeong J.H., Lee M., Lee S., Lee J.S., Chung D.K. Effects of oral intake of kimchi-derived lactobacillus plantarum k8 lysates on skin moisturizing. Journal of Microbiology and Biotechnology, 2015, 25(1): 74-80 CrossRef
  22. Jung Y.-O., Jeong H., Cho Y., Lee E.-O., Jang H.-W., Kim J., Nam K., Lim K.-M. Lysates of a probiotic, Lactobacillus rhamnosus, can improve skin barrier function in a reconstructed human epidermis model. International Journal of Molecular Science, 2019, 20(17): 4289 CrossRef
  23. Ahumada-Cota R.E., Hernandez-Chiñas U., Milián-Suazo F., Chávez-Berrocal M.E., Navarro-Ocaña A., Martínez-Gómez D., Patiño-López G., Salazar-Jiménez E.P., Eslava C.A. Effect and analysis of bacterial lysates for the treatment of recurrent urinary tract infections in adults. Pathogens, 2020, 9(2): E102 CrossRef
  24. Pfefferle P.I., Prescott S.L., Kopp M. Microbial influence on tolerance and opportunities for intervention with prebiotics/probiotics and bacterial lysates. Review. The Journal of Allergy and Clinical Immunology, 2013, 131(6): 1453-1463 CrossRef
  25. Lau S. Bacterial lysates in food allergy prevention. Review. Current Opinion in Allergy and Clinical Immunology, 2013, 13(3): 293-295 CrossRef
  26. Roberts J.D., Suckling C.A., Peedle G.Y, Murphy J.A., Dawkins T.G., Roberts M.G. An exploratory investigation of endotoxin levels in novice long distance triathletes, and the effects of a multi-strain probiotic/prebiotic, antioxidant intervention. Nutrients, 2016, 8(11): 733 CrossRef
  27. Didovyk A., Tonooka T., Tsimring L., Hasty J. Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth. Biol., 2017, 6(12): 2198-2208 CrossRef
  28. Fadda S., Sanz Y., Vignolo G., Aristoy M.C., Oliver G., Toldra F. Sharacterization of muscle sarcoplasmic and myofibrillar protein hydrolysis caused by Lactobacillus plantarum. Applied and Environmental Microbiology, 1999, 65(8): 3540-3546.
  29. Przybylski R., Firdaous L., Châtaigné G., Dhulster P., Nedjar N. Production of an antimicrobial peptide derived from slaughterhouse byproduct and its potential application on meat as preservative. Food Chemistry, 2016, 211: 306-313 CrossRef
  30. Chernukha I.M., Mashentseva N.G., Afanas'ev D.A., Vostrikova N.L. Teoriya i praktika pererabotki myasa, 2020, 5(12): 12-19 (in Russ.).
  31. Afanas'ev D.A., Mashentseva N.G., Chernukha I.M. Pishchevaya promyshlennost', 2019, 4: 20-22 CrossRef (in Russ.).
  32. Afanas'ev D.A., Klabukova D.L., Mashentseva N.G., Akhremko A.G., Kulikovskii A.V., Chernukha I.M. Myasnaya industriya, 2016, 12: 18-22.
  33. de Man J.C., Rogosa M., Sharpe M.E. A medium for the cultivation of Lactobacillus. Journal of Applied Bacteriology, 1960, 23: 130-135 CrossRef
  34. Mæhre H.K., Dalheim L., Edvinsen G.K., Elvevoll E.O., Jensen I.-J. Protein determination — method matters. Foods, 2018, 7(1): 5 CrossRef
  35. Polygalina G.V., Cherednichenko V.S., Rimareva L.V. Opredelenie aktivnosti fermentov [Assessment of enzyme activity]. Moscow, 2003 (in Russ.).
  36. Ryhänen L., Rantala-Ryhänen S., Tan E.M.L., Uitto J. Assay of collagenase activity by a rapid, sensitive, and specific method. Collagen and Related Research, 1982, 2(2): 117-130 CrossRef
  37. Chernukha I.M., Mashentseva N.G., Vostrikova N.L., Kovalev L.I., Kovaleva M.A., Afanas'ev D.A., Bazhaev A.A. Generation of bioactive peptides in meat raw materialsexposed to proteases of different origin Agricultural Biology. [Sel'skokhozyaistvennaya biologiya], 2018, 53(6): 1247-1261 CrossRef 
  38. Kovalev L.I., Shishkin S.S., Kovaleva M.A., Ivanov A.V., Vostrikova N.L., Chernukha I.M. Vse o myase, 2013, 3: 32-34 (in Russ.).
  39. Kovalyov L.I., Kovalyova M.A., Kovalyov P.L., Serebryakova M.V., Moshkovskii S.A., Shishkin S.S. Polymorphism of delta 3,5-delta2,4-dienoyl-coenzyme A isomerase (the ECH1 gene product protein) in human striated muscle tissue. Biochemistry, 2006, 71(4): 448-453 CrossRef
  40. Shishkin S.S., Kovalev L.I., Kovaleva M.A., Krakhmaleva I.N., Lisitskaya K.V., Eremina L.S., Ivanov A.V., Gerasimov E.V., Sadykhov E.G., Ulasova N.Yu., Sokolova O.S., Toropygin I.Yu., Popov V.O. Database. Proteomics of prostate cancer. Acta Naturae, 2010, 2(4): 95-104 CrossRef
  41. Zvereva E.A., Kovalev L.I., Ivanov A.V., Kovaleva M.A., Zherdev A.V., Shishkin S.S., Lisitsyn A.B., Chernukha I.M., Dzantiev B.B. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Science, 2015, 105: 46-52 CrossRef
  42. Venegas-Ortega M.G., Flores-Gallegos A.C., Martínez-Hernández J.L., Aguilar C.N., Nevárez-Moorillón G.V. Production of bioactive peptides from lactic acid bacteria: a sustainable approach for healthier foods. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 1039-1051 CrossRef
  43. Tabatabaie F., Mortazavi A. Studying the effects of ultrasound shock on cell wall permeability and survival of some LAB in milk. World Journal ofApplied Science, 2008, 3(1): 119-121.
  44. Donkor O.N., Henriksson A., Vasiljevic T., Shah N.P. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Lait, 2007, 87(1): 21-38 CrossRef
  45. García-Cano I., Rocha-Mendoza D., Ortega-Anaya J. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Applied Microbiology and Biotechnology, 2019, 103: 5243-5257 CrossRef
  46. Parra L., Requena T., Casal V., Gómez R. Proteolytic activity of lactobacilli in a model goats' milk curd system. Letters in Applied Microbiology, 1996, 23(6): 375-378 CrossRef
  47. Bascomb S., Manafi M. Use of enzyme tests in characterization and identification of aerobic and facultatively anaerobic gram-positive cocci. Clinical Microbiology Reviews, 1998, 11(2): 318-340.
  48. Son S.-H., Jeon H.-I., Yang S.-J., Sim M.-H., Kim Y.-J., Lee N.-K., Paik H.-D. Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity. Food Science and Biotechnology, 2018, 27(1): 123-129 CrossRef
  49. Colombo M., Castilho N.P.A., Todorov S.D., Nero L.A. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiology, 2018, 18: 219 CrossRef
  50. Kivanç M., Yilmaz M., Çakir E. Isolation and identification of lactic acid bacteria from boza, and their microbial activity against several reporter strains. Turkish Journal of Biology, 2011, 35: 313-324 CrossRef
  51. Kim S., Huang E., Park S., Holzapfel W., Lim S.D. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean Journal for Food Science of Animal Resources, 2018, 38(3): 554-569 CrossRef
  52. Esteban-Torres M., Mancheño J.M., de las Rivas B., Muñoz R. Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis. Journal of Dairy Science, 2014, 97(11): 6737-6744 CrossRef
  53. Esteban-Torres M., Reverón I., Santamaría L., Mancheño J.M., de Las Rivas B., Muñoz R. The Lp_3561 and Lp_3562 enzymes support a functional divergence process in the lipase/esterase toolkit from Lactobacillus plantarum. Frontiers in Microbiology, 2016, 19(7): 1118 CrossRef
  54. Ramakrishnan V., Goveas L.C., Narayan B., Halami P.M. Comparison of lipase production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 using fish waste as substrate: optimization of culture conditions by response surface methodology. International Scholarly Research Notices, 2013, 2013: 980562 CrossRef
  55. El Soda M., Abd El Wahab H., Ezzat N., Desmazeaud M.J., Ismail A. The esterolytic and lipolytic activities of the Lactobacilli. II. Detection of the esterase system of Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus lactis and Lactobacillus acidophilus. Lait, 1986, 66: 431-443 CrossRef
  56. Kim H.M., Lee D.E., Park S.D., Kim Y.T., Kim Y.J., Jeong J.W., Jang S.S., Ahn Y.T., Sim J.H., Huh C.S., Chung D.K., Lee J.H. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging. The Journal of Microbiology and Biotechnology, 2014, 24(11): 1583-1591 CrossRef
  57. Hong Y.F., Lee H.Y., Jung B.J., Jang S., Chung D.K., Kim H. Lipoteichoic acid isolated from Lactobacillus plantarum down-regulates UV-induced MMP-1 expression and up-regulates type I procollagen through the inhibition of reactive oxygen species generation. Molecular Immunology, 2015, 67(2, Part B): 248-255 CrossRef
  58. Shirzad M., Hamedi J., Motevaseli E., Modarressi M.H. Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46: 1051-1061 CrossRef
  59. Shaikhiev A.A. Voprosy pitaniya, 1977, 2: 63-65 (in Russ.).
  60. Nuryana I., Andriani A., Lisdiyanti P., Yopi. Analysis of organic acids produced by lactic acid bacteria. IOP Conference Series Earth and Environmental Science, 2019, 251(1): 012054 CrossRef
  61. Guédon E., Renault P., Ehrlich S.D., Delorme C. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. Journal of Bacteriology, 2001, 183(12): 3614-3622 CrossRef
  62. Gitton C., Meyrand M., Wang J. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Applied and Environmental Microbiology, 2005, 71(11): 7152-7163 CrossRef
  63. Williams A.G., Noble A.J., Tammam J., Lloyd D., Banks J.M. Factors affecting the activity of enzymes involved in peptide and amino acid catabolism in non-starter lactic acid bacteria isolated from Cheddar cheese. International Dairy Journal, 2002, 12(10): 841-852 CrossRef
  64. Liu M., Renckens B., Bayjanov J.R., Nauta A. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genomics, 2010, 11(1): 36 CrossRef
  65. Gu Y., Majumder K., Wu J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International, 2011, 44(8): 2465-2474) CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)