doi: 10.15389/agrobiology.2019.6.1080eng

UDC: 636.5:57.08:577.21



L.G. Korshunova, R.V. Karapetyan, O.F. Ziadinova, V.I. Fisinin

Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail (✉ corresponding author),,,

Korshunova L.G.
Ziadinova O.F.
Karapetyan R.V.
Fisinin V.I.

Received October 7, 2019


Transgenic poultry is a powerful instrument for the biotechnologic research in agriculture and medicine as well as a useful biological model (H. Sang, 2004). The technologies of transgenesis can be also aimed at the improvement of qualitative and quantitative characteristics of poultry products (L.G. Korshunova, 2011); development of poultry crosses genetically resistible to infectious diseases (L.G. Korshunova et al., 2014); derivation of poultry that can produce recombinant proteins of different usage areas within the eggs (D. Cao et al., 2015). The most popular way to induce transgenicity is the microinjection of foreign DNA into the ovicell in the proper moment when the organism consists of a single cell (zygote). Certain peculiarities of avian reproduction, however, constrain the induction of the transgenesis. A hen produces daily a single fertilized ovicell which is large in size and extremely sensitive to any manipulation like those to be performed on the mammal ovicells at the injection of foreign DNA. Furthermore, normal embryonic development in avian eggs requires the integrity of tertiary coats — albumen, inner shell membrane, and eggshell itself. The cleavage of chicken ovicell starts as early as in the magnum while freshly laid egg contains ca. 50,000-60,000 cells. As a consequence, first transgenic bird was produced via retroviral vectors. Retroviruses were the first contenders for the role of vectors in the gene transfer since they normally can enter the genomic DNA of the host with subsequent replication. At present the induction of retroviral (D.W. Salter et al., 1986; D.W. et al. Salter, 1987; D.W. et al. Salter, 1989; R.A. Bosselman et al., 1989; L.B. Crittenden, 1991; L.B. Crittenden et al., 1992) and lentiviral (H.A. Kaleri et al., 2011; A.H. Seidl et al., 2013; N.A. Volkova et al., 2015) transgenesis in chicken and quails was reported. The technologies of genomic modification in chicken and quails are continuing their development: e.g. the methods with the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) (T.S. Park et al., 2014), CRISPR/Cas9 (I. Oishi et al., 2016; Q. Zuo et al., 2016) were developed. The CRISPR/Cas9 technology allows for the further progress in the genetic manipulations to produce genome-edited lines of poultry (N. Veron et al., 2015). Avian embryos, primarily chicken (Gallus gallus domesticus) and quail (Coturnix coturnix japonica), served as a model for the embryologic studies in vertebrates for more than a century. Modern targeted genetic manipulations in chicken embryo as an in vivo model became possible via the CRISPR/Cas9 editing system (V. Morin et al., 2017). The alternative non-viral methods of the induction of transgenesis in avian species can be used; one of these methods involves the transfer of foreign embryonic cells (as foreign DNA vector) into the recipient embryo resulting in the chimeric birds (J.N. Petitte et al., 1990; J.Y. Han et al., 2017; N.A. Volkova et al., 2017). Another attractive technology for the transfer of foreign genetic material into avian embryos involves the use of spermatozoa as the vectors since artificial insemination is the traditional and common technique for poultry (E. Harel-Markowitz et al., 2009; A.V. Samoylov et al., 2013). The combination of spermatozoa vectors and CRISPR/Cas9 technology can result in transgenesis in the first generation and hence allows for the substantial savings in time and resources (C.A. Cooper et al., 2017). The microinjection of DNA into the zygote is still a classic technology of non-viral transgenesis. The method involves direct injection of gene construct into the cytoplasm of freshly fertilized ovicell and subsequent incubation of injected eggs. The ovicell for injection should be taken immediately after its fertilization which means that its movement down the oviduct should be interrupted; further development of the injected embryo require special cultivation system (C. Mather, 1994). Another microinjection technique for avian ovicells involves natural formation of tertiary coats in the oviduct. The method is based on the surgical operation to get the access to the ovicell, its microinjection with foreign DNA, and implantation of injected ovicell back to the maternal oviduct for the formation of normal egg suitable for incubation (R.V. Karapetyan, 1995). The populations of transgenic chicken and quails with different foreign gene constructs were produced with the use of this method (R.V. Karapetyan, 1996; L.G. Korshunova et al., 2013).

Keywords: transgenesis, poultry, retroviruses, microinjection, primordial cells, sperm cells, genome editing.



  1. Cao D., Wu H., Li Q., Sun Y., Liu T., Fei J., Zhao Y., Wu S., Hu X., Li N. Expression of recombinant human lysozyme in egg whites of transgenic hens. PLoS ONE, 2015, 10(2): e0118626 CrossRef
  2. Lin S.L., Chang S.E., Ying S.Y. Transgene-like animal models using intronic microRNAs In: MicroRNA protocols. Methods in molecular biology. V. 1733. S.Y. Ying (ed.). Humana Press, NY, 2018: 239-254 CrossRef
  3. Lee S.H., Gupta M.K., Ho Y.T., Kim T., Lee H.T. Transgenic chickens expressing human urokinase-type plasminogen activator. Poultry Science, 2013, 92(9): 2396-2403 CrossRef
  4. Byun S.J., Ji M.R., Jang Y.J., Hwang A.I., Chung H.K., Kim J.S., Kim K.W., Chung H.J., Yang B.C., Jeon I., Park J.K., Yoo J.G., Kim T.Y. Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken. BMB Reports, 2013, 46(8): 404-409 CrossRef
  5. Sang H. Prospects for transgenesis in the chick. Mechanisms of Development, 2004, 121(9): 1179-1186 CrossRef
  6. Bosselman R.A., Hsu R.-Y., Boggs T., Hu S., Bruszewski J., Ou S., Kozar L., Martin F., Green C., Jacobsen F., Nicholson M., Schultz J.A., Semon K.M., Rishell W., Stewart, R.G. Germline transmission of exogenous genes in the chicken. Science, 1989, 243(4890): 533-535 CrossRef
  7. Crittenden L.B. Retroviral elements in the genome of the chicken: implications for poultry genetics and breeding. Critical Reviews of Poultry Biology, 1991, 3(2): 73-109.
  8. Salter D.W., Smith E.J., Hughes S.H., Wright S.E., Crittenden L.B. Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology, 1987, 157(1): 236-240 CrossRef
  9. Salter D.W., Smith E.J., Hughes S.H., Wright S.E., Fadly A.M., Witter R.L., Crittenden L.B. Gene insertion into the chicken germ line by retroviruses. Poultry Science, 1986, 65(8): 1445-1458 CrossRef
  10. Salter D.W., Crittenden L.B. Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Theoretical and Applied Genetics, 1989, 77(4): 457-461 CrossRef
  11. Crittenden L.B., Salter D.W. A transgene, alv6, that expresses the envelope of subgroup A avian leukosis virus reduces the rate of congenital transmission of a field strain of avian leukosis virus. Poultry Science, 1992, 71(5): 799-806 CrossRef
  12. Petropoulos C.J., Payne W., Salter D.W., Hughes S.H. Appropriate in vivo expression of a muscle-specific promoter by using avian retroviral vectors for gene transfer [corrected]. Journal of Virology, 1992, 66(6): 3391-3397.
  13. Poynter G., Huss D., Lansford R. Japanese quail: an efficient animal model for the production of transgenic avians. Cold Spring Harbor Protocols, 2009, 2009(1): pdb emo112 CrossRef
  14. McGrew M.J., Sherman A., Lillico S.G., Taylor L., Sang H. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens. BMC Developmental Biology, 2010, 10: 26 CrossRef
  15. Kwon M.S., Koo B.C., Choi B.R., Park Y.Y., Lee Y.M., Suh H.S., Park Y.S., Lee H.T., Kim J.H., Roh J.Y., Kim N.H., Kim T. Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Molecular Reproduction and Development, 2008, 75(7): 1120-1126 CrossRef
  16. Scott B.B., Lois C. Generation of tissue-specific transgenic birds with lentiviral vectors. Proceedings of the National Academy of Sciences, 2005, 102(45): 16443-16447 CrossRef
  17. Ayers K.L., Smith C.A., Lambeth L.S. The molecular genetics of avian sex determination and its manipulation. Genesis, 2013, 51(5): 325-336 CrossRef
  18. Seidl A.H., Sanchez J.T., Schecterson L., Tabor K.M., Wang Y., Kashima D.T., Poynter G., Huss D., Fraser S.E., Lansford R., Rubel E.W. Transgenic quail as a model for research in the avian nervous system: a comparative study of the auditory brainstem. The Journal of Comparative Neurology, 2013, 521(1): 5-23 CrossRef
  19. Park F. Lentiviral vectors: are they the future of animal transgenesis? Physiological Genomics, 2007, 31(2): 159-173 CrossRef
  20. Intarapat S., Stern C.D. Chick stem cells: current progress and future prospects. Stem Cell Research, 2013, 11(3): 1378-1392 CrossRef
  21. Byun J.S., Yuk S.S., Jang Y.J., Choi H., Jeon M.H., Erdene-Ochir T.O., Kwon J.H., Noh J.Y., Kim J.S., Yoo J.G., Song C.S. Transgenic chickens expressing the 3D8 single chain variable fragment protein suppress avian influenza transmission. Scientific Reports, 2017, 7(1): 5938 CrossRef
  22. Kaleri H.A., Xu S.Y., Lin H.L. Generation of transgenic chicks using an oviduct-specific expression system. Genetics and Molecular Research, 2011, 10(4): 3046-3055 CrossRef
  23. Volkova N.A., Fomin I.K., Tomgorova E.K., Vetokh A.N., Mennibaeva E.R., Brem G., Zinov'eva N.A. The study of factors affected the gene transfer efficiency in chicken embryonic cells by application of lentiviral vectors. Agricultural Biology[Sel'skokhozyaistvennaya biologiya], 2015, 50(4): 458-466 CrossRef
  24. Park S.H., Kim J.N., Park T.S., Lee S.D., Kim T.H., Han B.K., Han J.Y. CpG methylation modulates tissue-specific expression of a transgene in chickens. Theriogenology, 2010, 74(5): 805-816.e1 CrossRef
  25. Park T.S., Lee H.G., Moon J.K., Lee H.J., Yoon J.W., Yun B.N., Kang S.C., Kim J., Kim H., Han J.Y., Han B.K. Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter. The FASEB Journal, 2015, 29(6): 2386-2396 CrossRef
  26. Park T.S., Lee H.J., Kim K.H., Kim J.S., Han J.Y. Targeted gene knockout in chickens mediated by TALENs. Proceedings of the National Academy of Sciences, 2014, 111(35): 12716-12721 CrossRef
  27. Oishi I., Yoshii K., Miyahara D., Kagami H., Tagami T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Scientific Reports, 2016, 6: 23980 CrossRef
  28. Zuo Q., Wang Y., Cheng S., Lian C., Tang B., Wang F., Lu Z., Ji Y., Zhao R., Zhang W., Jin K., Song J., Zhang Y., Li B. Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology. G3: Genes, Genomes, Genetics, 2016, 6(6): 1787-1792 CrossRef
  29. Davey M.G., Balic A., Rainger J., Sang H.M., McGrew M.J. Illuminating the chicken model through genetic modification. Int. J. Dev. Biol., 2018, 62: 257-264 CrossRef
  30. Fineran P.C., Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology, 2012, 434(2): 202-209 CrossRef
  31. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821 CrossRef
  32. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385): 331-338 CrossRef
  33. Cox D.B.T., Platt R.J., Zhang F. Therapeutic genome editing: prospects and challenges. Nature Medicine, 2015, 21(2): 121-131 CrossRef
  34. Ramanan V., Shlomai A., Cox D.B.T., Schwartz R.E., Michailidis E., Bhatta A., Scott D.A., Zhang F., Rice C.M., Bhatia S.N. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Reports, 2015, 5: 10833 CrossRef
  35. Véron N., Qu Z., Kipen P.A.S., Hirst C.E., Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Developmental Biology, 2015, 407(1): 68-74 CrossRef
  36. Abu-Bonsrah K.D., Zhang D., Newgreen D.F. CRISPR/Cas9 targets chicken embryonic somatic cells in vitro and in vivo and generates phenotypic abnormalities. Scientific Reports, 2016, 6: 34524 CrossRef
  37. Cheng Y., Lun M., Liu Y., Wang H., Yan Y., Sun J. CRISPR/Cas9-mediated chicken TBK1 gene knockout and its essential role in STING-mediated IFN-beta induction in chicken cells. Frontiers in Immunology, 2018, 9: 3010 CrossRef
  38. Tang N., Zhang Y., Pedrera M., Chang P., Baigent S., Moffat K., Shen Z., Nair V., Yao Y. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine, 2018, 36(5): 716-722 CrossRef
  39. Williams R.M., Senanayake U., Artibani M., Taylor G., Wells D., Ahmed A.A., Sauka-Spengler T. Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development, 2018, 145(4): dev160333 CrossRef
  40. Gandhi S., Piacentino M.L., Vieceli F.M., Bronner M.E. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Developmental Biology, 2017, 432(1): 86-97 CrossRef
  41. Morin V., Véron N., Marcelle C. CRISPR/Cas9 in the chicken embryo. In: Avian and reptilian developmental biology. Methods in molecular biology, vol. 1650. G. Sheng (ed.). Humana Press, NY, 2017: 113-123 CrossRef
  42. Hirst C.E., Serralbo O., Ayers K.L., Roeszler K.N., Smith C.A. Genetic manipulation of the avian urogenital system using in ovo electroporation. In: Avian and reptilian developmental biology. Methods in molecular biology, vol. 1650. G. Sheng (ed.). Humana Press, NY, 2017: 177-190 CrossRef
  43. Petitte J.N., Clark M.E., Liu G., Verrinder Gibbins A.M., Etches R.J. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development, 1990, 108(1): 185-189.
  44. Han J.Y., Lee B.R. Isolation and characterization of chicken primordial germ cells and their application in transgenesis. In: Avian and reptilian developmental biology. Methods in molecular biology, vol. 1650. G. Sheng (ed.). Humana Press, NY, 2017: 229-242 CrossRef
  45. Volkova N.A., Bagirov V.A., Tomgorova E.K., Vetokh A.N., Volkova L.A., Zinov'eva N.A. Isolation, cultivation and characterization of quail primordial germ cells. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2017, 52(2): 261-267 CrossRef
  46. Choi H.J., Lee H.C., Kang K.S., Lee H.G., Ono T., Nagai H., Sheng G., Han J.Y. Production of interspecific germline chimeras via embryo replacement. Biology of Reproduction, 2015, 93(2): Article 36 CrossRef
  47. Haraguchi S., Matsubara Y., Hosoe M. Chick embryos can form teratomas from microinjected mouse embryonic stem cells. Develop. Growth Differ., 2016, 58(2): 194-204 CrossRef
  48. Brazolot C.L., Petitte J.N., Etches R.J., Verrinder Gibbins A.M. Efficient transfection of chicken cells by lipofection, and introduction of transfected blastodermal cells into the embryo. Molecular Reproduction and Development, 1991, 30(4): 304-312 CrossRef
  49. Petitte J.N., Karagenc L., Ginsburg M. The origin of the avian germ line and transgenesis in birds. Poultry Science, 1997, 76(8): 1084-1092 CrossRef
  50. Etches R.J. Transgenic chickens. Proc. 10th European poultry conference «The poultry industry towards the 21st century». Jerusalem, Israel, 1998: 3-6.
  51. Savva D., Page N., Vick L., Simkiss K. Detection of foreign DNA in transgenic chicken embryos using the polymerase chain reaction. Research in Veterinary Science, 1991, 50(2): 131-133 CrossRef
  52. Petitte J.N., Liu G., Yang Z. Avian pluripotent stem cells. Mechanisms of Development, 2004, 121(9): 1159-1168 CrossRef
  53. Song Y., Duraisamy S., Ali J., Kizhakkayil J., Jacob V.D., Mohammed M.A., Eltigani M.A., Amisetty S., Shukla M.K., Etches R.J., de Lavoir M.C. Characteristics of long-term cultures of avian primordial germ cells and gonocytes. Biology of Reproduction, 2014, 90(1): Article 15 CrossRef
  54. Leighton P.A., van de Lavoir M.C., Diamond J.H., Xia C., Etches R.J. Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase. Molecular Reproduction and Development, 2008, 75(7): 1163-1175 CrossRef
  55. Motono M., Yamada Y., Hattori Y., Nakagawa R., Nishijima K., Iijima S. Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector. Journal of Bioscience and Bioengineering, 2010, 109(4): 315-321 CrossRef
  56. Nakamura Y., Usui F., Ono T., Takeda K., Nirasawa K., Kagami H., Tagami T. Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken. Biology of Reproduction, 2010, 83(1): 130-137 CrossRef
  57. Park K.J., Kang S.J., Kim T.M., Lee Y.M., Lee H.C., Song G., Han J.Y. Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens. In Vitro Cell. Dev. Biol.-Animal, 2010, 46(10): 828-833 CrossRef
  58. Nakamura Y., Usui F., Miyahara D., Mori T., Ono T., Kagami H., Takeda K., Nirasawa K., Tagami T. X-irradiation removes endogenous primordial germ cells (PGCs) and increases germline transmission of donor PGCs in chimeric chickens. Journal of Reproduction and Development, 2012, 58(4): 432-437 CrossRef
  59. Song Y., D'Costa S., Pardue S.L., Petitte J.N. Production of germline chimeric chickens following the administration of a busulfan emulsion. Molecular Reproduction and Development, 2005, 70(4): 438-444 CrossRef
  60. Nakamura Y., Yamamoto Y., Usui F., Atsumi Y., Ito Y., Ono T., Takeda K., Nirasawa K., Kagami H., Tagami T. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chickens. Reproduction, Fertility, and Development, 2008, 20(8): 900-907 CrossRef
  61. Mucksová J., Reinišová M., Kalina J., Lejčková B., Hejnar J., Trefil P. Conservation of chicken male germline by orthotopic transplantation of primordial germ cells from genetically distant donorsdagger. Biology of Reproduction, 2019, 101(1): 200-207 CrossRef
  62. Harel-Markowitz E., Gurevich M., Shore L.S., Katz A., Stram Y., Shemesh M. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone. Biology of Reproduction, 2009, 80(5): 1046-1052 CrossRef
  63. Samoilov A.V., Kesyan A.Z., Suraeva N.M. Izvestiya Rossiiskoi akademii nauk. Seriya biologicheskaya, 2013, 5: 517-521 CrossRef (in Russ.).
  64. Korshunova L.G., Karapetyan R.V., Ziadinova O.F. Ptitsevodstvo, 2017, 4: 22-25 (in Russ.).
  65. Chaparian S., Abdulahnejad A., Rashidi F., Toghyani M., Gheisari A., Eghbalsaied S. Is passive transmission of non-viral vectors through artificial insemination of sperm-DNA mixtures sufficient for chicken transgenesis? Journal of Reproduction and Development, 2016, 62(3): 265-270 CrossRef
  66. Wang L., Li J. “Artificial spermatid”-mediated genome editing. Biology of Reproduction, 2019, 101(3): 538-548 CrossRef
  67. Cooper C.A., Challagulla A., Jenkins K.A., Wise T.G., O'Neil T.E., Morris K.R., Tizard M.L., Doran T.J. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Research, 2017, 26(3): 331-347 CrossRef
  68. Sang H.M., Perry M.M., Gribbin C., Mather C., Morrice D., Love J. Chick embryo culture and gene transfer. In: AFRC Institute of Animal Physiology and Genetics Research. Report for 1990-1991. R.B. Heap, H.D. Griffin, G. Leng et al. (eds.). Agricultural and Food Research Council, Cambridge, 1992: 52-53.
  69. Andacht T., Hu W., Ivarie R. Rapid and improved method for windowing eggs accessing the stage X chicken embryo. Molecular Reproduction and Development, 2004, 69(1): 31-34 CrossRef
  70. Mather C. Transgenic chicken by DNA microinjection. Poultry International, 1994, 33(6): 16-18.
  71. Ellendorff F., Gulyas N., Muhlbauer E., Klein S. Potential use of molecular sex recognition in layer birds. Proc. XX World's Poultry Congress. New Delhi, India, 1996: 3-4.
  72. Ernst L.K., Fisinin V.I., Zhuravlev I.V., Karapetyan R.V., Matveenko N.P., Ziadinova O.F., Kudryavtsev I.V., Kuzin B.A., Enikolopov G.N. Sposob transplantatsii kurinoi yaitsekletki. Pat. 1565025 SU. № 4396482. Zayavl. 23.03.88. Opubl. 15.01.90. Byul. № 1 [Method for chicken egg transplantation. Patent 1565025 SU. № 4396482. Claims 23.03.88. Publ. 15.01.90. Bul. № 1](in Russ.).
  73. Karapetyan R.V. Doklady RASKHN, 1995, 4: 27-29 (in Russ.).
  74. Karapetyan R.V. Doklady RASKHN, 1996, 2: 19-20 (in Russ.).
  75. Fisinin V.I., Ernst L.K., Karapetyan R.V., Matveenko N.P., Zazykina T.V., Ziadinova O.F., Zhadanov A.B. Sposob povysheniya yaichnoi produktivnosti ptitsy. Pat. 2061366 RU. № 93019970/15. Zayavl. 19.04.93. Opubl. 10.06.96. Byul. № 16 [Method for increase egg productivity of poultry. Patent 2061366 RU. № 93019970/15. Claims 19.04.93. Publ. 10.06.96. Bul. № 16] (in Russ.).
  76. Korshunova L.G., Karapetyan R.V., Fisinin V.I. Methods for genetic modification in poultry (review). Agricultural Biology[Sel'skokhozyaistvennaya biologiya], 2013, 6: 3-15 (in Russ.).
  77. Korshunova L.G., Fisinin V.I., Karapetyan R.V. Ptitsa i ptitseprodukty, 2015, 2: 47-49 (in Russ.).
  78. Korshunova L.G., Karapetyan R.V., Ziadinova O.F. Modification of chicken genome by interferon gene. Russian Agricultural Sciences, 2014, 40(5): 379-381 CrossRef
  79. Korshunova L.G., Karapetyan R.V. Veterinariya, 2009, 5: 15-16 (in Russ.).
  80. Korshunova L.G. Biological and productive properties of quails transgenic on bovine somatotropin gene. Agricultural Biology[Sel'skokhozyaistvennaya biologiya], 2011, 2: 46-50 (in Engl.).






Full article PDF (Rus)

Full article PDF (Eng)