doi: 10.15389/agrobiology.2019.6.1167eng

UDC: 636.294:575.174:575.113:577.2.08

The equipment of the Sharing Center for Farm Animal Bioresources and Bioengineering (FSC for Animal Husbandry) was used.
Supported financially by Russian Science Foundation, project 16-16-10068-P



V.R. Kharzinova1, T.E. Deniskova1, A.V. Dotsev1, A.D. Solovieva1,
T.M. Romanenko2, K.A. Laishev3, V.I. Fedorov4, I.M. Okhlopkov5,
H. Reyer6, K. Wimmers6, G. Brem1, 7, N.A. Zinovieva1

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail (✉ corresponding author),,,,;
2Laverov Federal Center for Integrated Arctic Research (FCIARctic) RAS, Naryan-Mar Agro-Experimental Station, 1a, ul. Rybnikov, Naryan-Mar, Nenets AO, 166004 Russia, e-mail;
3Northwest Center for Interdisciplinary Research of Food Security Problems, 7, sh. Podbel’skogo, St. Petersburg—Pushkin, 196608 Russia, e-mail;
4Safronov Yakutsk Research Institute of Agriculture, Siberian Branch RAS, 23/1, ul. Bestuzheva-Marlinskogo, Yakutsk, Sakha Republic, 677001 Russia, e-mail;
5Institute for Biological Problems of Cryolithozone, Siberian Branch RAS, 41, prosp. Lenina, Yakutsk, Sakha Republic, 677980 Russia, e-mail;
6Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Mecklenburg-Vorpommern, 18196 Dummerstorf, Germany, e-mai,;
7Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail

Kharzinova V.R.
Fedorov V.I.
Deniskova T.E.
Okhloplov I.M.
Dotsev A.V.
Reyer H.
Solovieva А.D.
Wimmers K.
Romanenko Т.М.
Brem G.
Layshev К.А.
Zinovieva N.A.

Received August 6, 2019


Reindeer (Rangifer tarandus) is a valuable member of the Arctic ecosystems and the main livestock species of the Russian North, which require the analysis of the genetic structure and the possibility of addressing the differences between wild and domestic forms, breeds and populations using modern molecular genetic approaches. The use of DNA chips based on parallel genotyping of hundreds of thousands of SNP markers is an effective approach to study the reindeer genome, but at the same time due to a high price, it is not beneficial for wide practical application. In this regard, the aim of our work is to select the optimal number of SNP markers that allow conducting population and genetic studies of reindeer without loss of bio-informatics content. The sample collection included wild deer (WLD, n = 83) inhabiting the Taimyr Peninsula and the Republic of Sakha (Yakutia), and domestic deer of the Nenets breed from the Nenets Autonomous Okrug (NEN, n = 100) and the Murmansk Region (MUR, n = 19), as well as from Even and Evenki breeds from the Republic of Sakha (Yakutia) (YAK, n = 19). All deer were genotyped using a high-density DNA chip BovineHD BeadChip (777,962 SNPs). After quality control and filtering, 4456 polymorphic SNP markers remained in the analysis. In the TRES program, using the Delta method, 368 of the most informative SNP markers were selected. Data processing was performed in the Admixture 1.3, PLINK 1.9 programs and R packages (ggplot2, adegenet 1.3-1, pophelper, diveRsity). It was shown that 70 % from 368 selected SNPs had a high minor allele frequency (MAF ≥ 0.3), while about 50 % from set including 4456 markers had MAF ≤ 0.1. Comparing the results of principal component analysis (PCA), discriminant principal component analysis (DAPC), and cluster analysis, no loss of information value was found for 368 SNPs compared to using the set of 4456 markers. Comparing pairwise FST values between the studied groups of reindeer, the similarity of the interpopulation linkages was demonstrated, based on 4456 and 368 SNP markers, respectively. Thus, the selected panel of SNP markers is an informative, universal for both wild and domestic deer and a cheap approach for creating a custom DNA chip for reindeer.

Keywords: Rangifer tarandus, reindeer, SNP markers, DNA chips.



  1. Baskin L.M. Severnyi olen'. Upravlenie povedeniem i populyatsiyami. Olenevodstvo. Okhota [Reindeer. Manage behavior and populations. Reindeer husbandry. Hunting]. Moscow, 2009 (in Russ.).
  2. Laishev K.A., Yuzhakov A.A. Nauchnyi vestnik Yamalo-Nenetskogo avtonomnogo okruga, 2017, 1(94): 45-48 (in Russ.).
  3. Zhang J., Chiodini R., Badr A., Zhang G. The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 2011, 38(3): 95-109 CrossRef
  4. Kchouk M., Gibrat J.F., Elloumi M. Generations of sequencing technologies: from first to next generation. Biol. Med. (Aligarh), 2017, 9(3): 1000395 CrossRef
  5. Li Z., Lin Z., Ba H., Chen L., Yang Y., Wang K., Qiu Q., Wang W., Li G. Draft genome of the reindeer (Rangifer tarandus). GigaScience,2017, 6(12): 1-5 CrossRef
  6. Taylor R.S., Horn R.L., Zhang X., Golding G.B., Manseau M., Wilson P.J. The caribou (Rangifer tarandus) genome. Genes, 2019, 10(7): 540 CrossRef
  7. Weldenegodguad M., Pokharel K., Ming Y., Honkatukia M., Peippo J., Reilas T, Røed K.H., Kantanen J. OP149 sequencing of reindeer (Rangifer tarandus) genomes: insights into evolution, domestication, and adaptation. Proc. 37th International Conference on Animal Genetics. Lleida, Spain, 2019: 42.
  8. Kharzinova V.R., Dotsev A.V., Deniskova T.E., Solovieva A.D., Fedorov V.I., Layshev K.A., Romanenko T.M., Okhlopkov I.M., Wimmers K., Reyer H., Brem G., Zinovieva N.A. Genetic diversity and population structure of domestic and wild reindeer (Rangifer tarandus L. 1758): a novel approach using BovineHD BeadChip. PLoS ONE, 2018, 13(11): e0207944 CrossRef
  9. Yannic G., Pellissier L., Ortego J., Lecomte N., Couturier S., Cuyler C., Dussault C., Hundertmark K.J., Irvine R.J., Jenkins D.A., Kolpashikov L., Mager K., Musiani M., Parker K.L., Røed K.H., Sipko T., Þórisson S.G., Weckworth B.V., Guisan A., Bernatchez L., Côté S.D. Genetic diversity in caribou linked to past and future climate change. Nature Climate Change, 2014, 4: 132-137 CrossRef
  10. Yuzhakov A.A. Materialy V Mezhdunarodnoi nauchnoi konferentsii «Ekologiya drevnikh i traditsionnykh obshchestv» [Proc. VInt. Conf. «Ecology of ancient and traditional societies»]. Tyumen', 2016: 269-274 (in Russ.).
  11. Ogden R. Unlocking the potential of genomic technologies for wildlife forensics. Molecular Ecology Resources, 2011, 11(Suppl. 1): 109-116 CrossRef
  12. Helyar S.J., Hemmer-Hansen J., Bekkevold D. Taylor M.I., Ogden R., Limborg M.T., Cariani A., Maes G.E., Diopere E., Carvalho G.R., Nielsen E.E. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Molecular Ecology Resources. 2011, 11(Suppl. 1): 123-136 CrossRef
  13. Kavakiotis I., Triantafyllidis A., Ntelidou D., Alexandri P., Megens H.J., Crooijmans R.P.M.A., Groenen M.A.M., Tsoumakas G., Vlahavas I. TRES: identification of discriminatory and informative SNPs from population genomic data. Journal of Heredity, 2015, 106(5): 672-676 CrossRef
  14. Wilkinson S., Wiener P., Archibald A.L., Law A., Schnabel R.D., McKay S.D., Taylor J.F., Ogden R. Evaluation of approaches for identifying population informative markers from high density SNP chips. BMC Genetics,2011, 12: 45 CrossRef
  15. Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M., Steemers F., Butler S.L., Deloukas P., Galver L., Hunt S., Mcbride C., Bibikova M., Rubano T., Chen J., Wickham E., Doucet D., Chang W., Campbell D., Zhang B., Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol., 2003, 68: 69-78 CrossRef
  16. Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4(1): s13742–015–0047–8 CrossRef
  17. Shriver M.D., Smith M.W., Jin L., Marcini A., Akey J.M., Deka R., Ferrell R.E. Ethnic-affiliation estimation by use of population-specific DNA markers. American Journal of Human Genetics, 1997, 60(4): 957-964.
  18. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: No date.
  19. Wickham H. ggplot2 — Elegant graphics for data analysis. Springer-Verlag, NY, 2009 CrossRef
  20. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 2008, 24(11): 1403-1405 CrossRef
  21. Jombart T., Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 2011, 27(21): 3070-3071 CrossRef
  22. Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19(9): 1655-1664 CrossRef
  23. Francis R.M. POPHELPER: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 2017, 17(1): 27-32 CrossRef
  24. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  25. Keenan K., McGinnity P., Cross T.F., Crozier W.W., Prodöhl P.A. diveRsity: an R package for the estimation of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 2013, 4(8): 782-788 CrossRef
  26. Haynes G.D., Latch E.K. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip. PLoS ONE, 2012, 7(5): e36536 CrossRef
  27. Kasarda R., Moravčíková N., Trakovická A., Krupová Z., Ondrej K. Genomic variation across cervid species in respect to the estimation of red deer diversity. Acta Veterinaria-Beograd, 2017, 67(1): 43-56 CrossRef
  28. Kharzinova V.R., Dotsev A.V., Solov'eva A.D., Fedorov V.I., Okhlopkov I.M., Vimmers K., Reier Kh., Brem G., Zinov'eva N.A. Population-genetic characteristics of domestic  reindeer of yakutia based on whole-genome SNP analysis. Agricultural Biology [Sel’skokhozyaistvennaya Biologiya], 2017, 52(4): 669-678 CrossRef
  29. Lorenz M.G.O., Cortes L.M., Lorenz J.J., Liu E.T. Strategy for the design of custom cDNA microarrays. Biotechniques, 2003, 34(6): 1264-1270 CrossRef
  30. Neerincx P.B.T., Rauwerda H., Nie H., Groenen M.A.M., Breit T.M., Leunissen J.A.M. OligoRAP — an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity. BMC Proc., 2009, 3(Suppl. 4): S4 CrossRef
  31. Kijas J.W., McEwan J., Clarke S., Henry H., Maddox J., McCulloch R., Driver F., Ilic K., Heaton M. Development of a SNP panel for parentage assignment in sheep. International Sheep Genomics Consortium, 2012. Available: No date.
  32. Heaton M.P., Leymaster K.A., Kalbfleisch T.S., Kijas J.W., Clarke S.M., McEwan J., Maddox J.F., Basnayake V., Petrik D.T., Simpson B., Smith T.P., Chitko-McKown C.G., International Sheep Genomics Consortium. SNPs for parentage testing and traceability in globally diverse breeds of sheep. PLoS ONE, 2014, 9(4): e94851 CrossRef
  33. Heaton M.P., Harhay G.P., Bennett G.L., Stone R.T., Grosse WM, Casas E., Keele J.W., Smith T.P.L., Chitko-McKown C.G., Laegreid W.W. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mammalian Genome, 2002, 13(5): 272-281 CrossRef
  34. Holl H.M., Vanhnasy J., Everts R.E., Hoefs-Martin K., Cook D., Brooks S.A., Carpenter M.L., Bustamante C.D., Lafayette C. Single nucleotide polymorphisms for DNA typing in the domestic horse. Animal Genetics, 2017, 48(6): 669-676 CrossRef






Full article PDF (Rus)

Full article PDF (Eng)