PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.6.1177eng

UDC: 636.294:636.086.2/.3:579

Acknowledgements:
Supported financially by Russian Science Foundation for project No. 17-76-20026 “Rumen microbiocenosis in Rangifer tarandus of the Russian Arctic as a fundamentals for promising animal biotechnologies”

 

HABITAT AS A DETERMINING FACTOR FOR THE REINDEER RUMEN MICROBIOME FORMATION IN RUSSIAN ARCTIC

L.A. Ilina1, K.A. Layshev2, E.A. Yildirim1, V.A. Philippova1,
T.P. Dunyashev1, A.V. Dubrovin1, D.V. Sobolev1, N.I. Novikova1,
G.Yu. Laptev1, A.A. Yuzhakov2, T.M. Romanenko3, Yu.P. Vylko3

1JSC Biotrof+, 19 korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail ilina@biotrof.ru (✉ corresponding author), deniz@biotrof.ru, filippova@biotrof.ru, timur@biotrof.ru, dubrowin.a.v@yandex.ru, sdv@biotrof.ru, natalia-iv-nov@rambler.ru, georg-laptev@rambler.ru;
2Northwest Center for Interdisciplinary Research of Food Security Problems, 7, sh. Podbel’skogo, St. Petersburg—Pushkin, 196608 Russia, e-mail layshev@mail.ru, alyuzhakov@mail.ru;
3Laverov Federal Center for Integrated Arctic Research (FCIARctic) RAS, Naryan-Mar Agro-Experimental Station, 1a, ul. Rybnikov, Naryan-Mar, Nenets AO, 166004 Russia, e-mail nmshos@atnet.ru, vylcko.yury@yandex.ru

ORCID:
Ilina L.A. orcid.org/0000-0003-2789-4844
Sobolev D.V. orcid.org/0000-0002-3238-979X
Laishev K.A. orcid.org/0000-0003-2490-6942
Novikova N.I. orcid.org/0000-0002-9647-4184
Yildirim E.A. orcid.org/0000-0002-5846-5105
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Philippova V.A. orcid.org/0000-0001-8789-9837
Yuzhakov A.A. orcid.org/0000-0002-0633-4074
Dunyashev T.P. orcid.org/0000-0002-3918-0948
Romanenko Т.М. orcid.org/0000-0003-0034-7453
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Vylko Yu.P. orcid.org/0000-0002-6168-8262

Received April 28, 2019

 

Reindeer (Rangifer tarandus) is geographically isolated from other subspecies of the ruminant family Cervidae. It is known that belonging to certain environmental conditions can have a significant impact on the composition of the ruminant rumen microbiome. With the use of molecular-biological analysis, we studied for the first time the patterns of formation of the reindeer’s rumen microbial communities for the Rangifer tarandus living in different natural and climatic zones of the Russian Federation. The purpose of the study is to assess the regional features of the reindeer’s rumen microbiome into the different Arctic regions of Russia using T-RFLP analysis and quantitative PCR. It was made a comparative analysis of the influence of a number of factors on the composition of the reindeer rumen microbiome, incl. gender and age peculiarities, regional habitat conditions and feeding ration features. Samples of the rumen content were collected in the summer-autumn period of 2017 from 58 individuals (n ³ 3 from each age group) in the Yamalo-Nenets Autonomous District (AO), Nenets Autonomous District and the Murmansk region. The total number of bacteria, archaea, and fungi of the Neocallimastigales was analyzed by quantitative PCR, and the composition of the bacterial community by T-RFLP (terminal restriction fragment polymorphism) method. The main determinant of all components of the microbial community of the reindeer’s rumen is regional habitat conditions, which, apparently, is due to differences in the composition of the pasture diet and the epizootic situation in the herd. The smallest similarity with other regions was found for samples from the Murmansk region, which is probably due to differences in reindeer pasture ration in this region, i.e. the differences in the composition of vegetation and lower nutritional values. Gender and age differences of animals were less significant though made a certain contribution to the ratio of microorganisms in the rumen. The clearest differences in the rumen microbiota were detected between groups of animals under 2 years of age and older than 2 years. In general, significant changes in the representation of a taxa number were noted in connection with the nutritional value of pasture ration. A statistically significant relationship was established between the level of fiber in grazing feed and members of the families Veillonellaceae (r = -0.75), Nostocaceae (r = 0.52), Rivulariaceae (r = -0.88), etc. in addition to traditionally associated with the processes of cellulose degradation bacteria. There is no significant correlation between the content of conditionally pathogenic microorganisms from the Fusobacteria, Tenericutes (Mycoplasmataceae), Proteobacteria (Enterobacteriaceae, Campylobacteraceae) and the nutritional value of feeds and other groups of microorganisms, which indicates the need for more research in this direction. The obtained data clarify aspects of the interaction and cohabitation of symbionts in the complex-component system of the reindeer rumen, which is characterized by the diversity of sources of plant polysaccharides and the variety of enzymes produced by microorganisms.

Keywords: Rangifer tarandus, T-RFLP analysis, quantitative PCR, rumen microbiome, reindeer, Russian Arctic.

 

REFERENCES

  1. Sundset M.A., Præsteng K.E., Cann I.K.O., Mathiesen S.D., Mackie R.I. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb. Ecol., 2007, 54(3): 424-438 CrossRef
  2. Malmuthuge N., Guan L.L. Gut microbiome and omics: a new definition to ruminant production and health. Animal Frontiers, 2016, 6(2): 8-12 CrossRef
  3. Matthews C., Crispie F., Lewis E., Reid M., O’Toole P.W., Cotter P.D. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 2019, 10(2): 115-132 CrossRef
  4. Hackmann T.J., Spain J.N. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. Journal of Dairy Science, 2010, 93(4): 1320-1334 CrossRef
  5. Morgavi D.P., Kelly W.J., Janssen P.H., Attwood G.T. Rumen microbial (meta)genomics and its application to ruminant production. Animal, 2013, 7(1): 184-201 CrossRef
  6. The ruminant animal: Digestive physiology and nutrition. D.C. Church (ed.). Prentice Hall, New Jersey, 1993.
  7. Hungate R.E. The rumen and its microbes. Academic Press, NY, 1966.
  8. Grilli D.J., Fliegerová K., Kopečný J., Lama S.P., Egea V., Sohaefer N., Pereyra C., Ruiz M.S., Sosa M.A., Arenas G.N., Mrázek J. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe, 2016, 42: 17-26 CrossRef
  9. Mathiesen S.D., Mackie R.I., Aschfalk A., Ringø E., Sundset M.A. Microbial ecology of the gastrointestinal tract in reindeer — changes through season. In: Microbial ecology of the growing animal; Biology of the growing animals. V. 3. W. Holzapfel, P. Naughton (eds.). Elsevier Press, Oxford: 73-100.
  10. Henderson G., Cox F., Ganesh S., Jonker A., Young W., Global Rumen Census Collaborators, Janssen P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep., 2015, 5: 14567 CrossRef
  11. Aagnes T.H., Sørmo W., Mathiesen S.D. Ruminal microbial digestion in free-living, in captive lichen-fed, and in starved reindeer (Rangifer tarandus tarandus) in winter. Appl. Environ. Microbiol., 1995, 61(2): 583-591.
  12. de la Fuente G., Belanche A., Girwood S.E., Pinloche E., Wilkinson T., Newbold C.J. Pros and cons of Ion-Torrent next generation sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for studying the rumen bacterial community. PLoS ONE, 2014, 9(7): e101435 CrossRef
  13. Wang L., Xu Q., Kong F., Yang Y., Wu D., Mishra S., Li Y. Exploring the goat rumen microbiome from seven days to two years. PLoS ONE, 2016, 11(5): e0154354 CrossRef
  14. Peng S., Yin J., Liu X., Jia B., Chang Z., Lu H., Jiang N., Chen Q. First insights into the microbial diversity in the omasum and reticulum of bovine using Illumina sequencing. J. Appl. Genetics, 2015, 56(3): 393-401 CrossRef
  15. Elekwachi C.O., Wang Z., Wu X., Rabee A., Forster R.J. Total rRNA-Seq analysis gives insight into bacterial, fungal, protozoal and archaeal communities in the rumen using an optimized RNA isolation method. Front. Microbiol., 2017, 8: 1814 CrossRef
  16. Gruninger R.J., Sensen C.W., McAllister T.A., Forster R.J. Diversity of rumen bacteria in Canadian cervids. PLoS ONE, 2014, 9(2): e89682 CrossRef
  17. Zielińska S., Kidawa D., Stempniewicz L., Łoś M., Łoś J.M. New insights into the microbiota of the Svalbard Reindeer Rangifer tarandus platyrhynchus. Front. Microbiol., 2016, 7: 170 CrossRef
  18. Laptev G.Yu., Novikova N.I., Il'ina L.A., Iyldyrym E.A., Nagornova K.V., Dumova V.A., Soldatova V.V., Bol'shakov V.N., Gorfunkel' E.P., Dubrovina E.G., Sokolova O.N., Nikonov I.N., Lebedev A.A. Normy soderzhaniya mikroflory v rubtse krupnogo rogatogo skota [The standards of microflora in cattle rumen]. St. Petersburg, 2016 (in Russ.).
  19. Maniatis T., Fritsch E.F., Sambrook J., Molekulyarnoe klonirovanie [Molecular cloning]. Moscow, 1984 (in Russ.).
  20. Zabrodin V.A., Laishev K.A., Dubovik I.K. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2015, 40: 108-112 (in Russ.).
  21. Olsen M.A., Aagnes T.H., Mathiesen S.D. The effect of timothy silage on the bacterial population in rumen fluid of reindeer (Rangifer tarandus tarandus) from natural summer and winter pasture. FEMS Microbiol Ecol., 1997, 24(2): 127-136 CrossRef
  22. Orpin C.G., Mathiesen S.D., Greenwood Y., Blix A.S. Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl. Environ. Microbiol., 1985, 50(1): 144-151.
  23. Wang T.Y., Chen H.L., Lu M.J., Chen Y.C., Sung H.M., Mao C.T., Cho H.Y., Ke H.M., Hwa T.Y., Ruan S.K., Hung K.Y., Chen C.K., Li J.Y., Wu Y.C., Chen Y.H., Chou S.P., Tsai Y.W., Chu T.C., Shih C.A., Li W.H., Shih M.C. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol. Biofuels, 2011, 4: 24 CrossRef
  24. Fonty G., Joblin K.N. Rumen anaerobic fungi: their role and interactions with other rumen microorganisms in relation to fiber digestion. In: Physiological aspects of digestion and metabolism in ruminants. T. Tsuda, Y. Sasaki, R. Kawashima (eds.). Academic Press, Toronto, ON, 1990: 665-680 CrossRef
  25. Sundset M.A., Edwards J.E., Cheng Y.F., Senosiain R.S., Fraile M.N., Northwood K.S., Præsteng K.E., Glad T., Mathiesen S.D., Wright A.D.G. Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb. Ecol., 2009, 57(2): 335-348 CrossRef
  26. Schofield B.J., Lachner N., Le O.T., McNeill D.M., Dart P., Ouwerkerk D., Hugenholtz P., Klieve A.V. Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. J. Appl. Microbiol., 2018, 124(3): 855-866 CrossRef
  27. Weimer P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front. Microbiol., 2015, 6: 296 CrossRef 
  28. Samsudin A.A., Evans P.N., Wright A.G., Jassim R.A. Molecular diversity of the foregut bacteria community in the dromedary camel (Camelus dromedarius). Environmental Microbiology, 2011, 13(11): 3024-3035 CrossRef
  29. Ishaq S.L, Wright A.D. Insight into the bacterial gut microbiome of the North American moose (Alces alces). BMC Microbiol., 2012, 12: 212 CrossRef
  30. McCann J.C., Elolimy A.A., Loor J.J. Rumen microbiome, probiotics, and fermentation additives. Veterinary Clinics of North America: Food Animal Practice, 2017, 33(3): 539-553 CrossRef
  31. Nocek J.E. Bovine acidosis: implications on laminitis. Journal of Dairy Science, 1997, 80: 1005-1028 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)