doi: 10.15389/agrobiology.2019.6.1065eng

UDC: 636.38:636.082:577.21

Acknowledgements: Supported financially by Russian Science Foundation (project No. 19-16-00070) 



T.E. Deniskova1, E. Kunz2, I. Medugorac2, A.V. Dotsev1, G. Brem1, 3, N.A. Zinovieva1

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail (✉ corresponding author),,
2Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Germany, 80539 Munich, Veterinaerstr. 13, e-mail,;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail

Deniskova T.E.
Kunz E.
Medugorac I.
Dotsev A.V.
Brem G.
Zinovieva N.A.

Received August 6, 2019


Fat-tailed sheep breeds comprise 25 % of the global sheep population and are widely distributed in Africa, Asia (A. Davidson, 1999), the Middle East (S.P. Alves et al., 2013), as well as in Russia (I.M. Dunin et al., 2013). The fat-tailed sheep breeds were valued since their fat was an important ingredient of national cuisine in many ethnic groups (C. Perry, 1995; A. Hajihosseinlo et al., 2015). To-date the customers prefer lean food and cut down the fat intake, and therefore the benefits of large fat tails of sheep have reduced their importance for food production (A. Nejati-Javaremi et al., 2007; M. Moradi et al., 2012). The development of genomic editing technologies (N.A. Zinovieva et al., 2019) makes it relevant to search for genes that determine the “fat tail” phenotype for the subsequent knockout without side effects on other valuable traits of the fat-tailed sheep breeds. This review summarizes the results of studies on identification of candidate genes associated with fat tail trait. Various methods are used to identify candidate genes, including search for selective sweeps (signatures of selection) based on the calculation of differences in allele frequencies (Fst values) or haplotypes frequencies between populations (hapFLK method) (M.H. Moradi et al., 2012; M.I. Fariello et al., 2013; C.M. Rochus et al., 2018); genome-wide association studies (GWAS) that require an availability of a phenotypic variability base for the studied traits of economic importance (S.S. Xu et al., 2017); analysis of copy number variation (CNV) that can alter gene expression due to deletion or duplication of genes in the regions of variation (C. Zhu et al., 2016; Q. Ma et al., 2017; V. Bhanuprakash et al., 2018); study of gene expression using RNA-seq technology based on transcriptome analysis using new generation sequencing technology (NGS) (W.A. Hoeijmakers, 2013). Summarizing the research results, the most significant candidate genes associated with the fat deposition of the tail of sheep are BMP2 and VRTN (Z. Yuan et al., 2017; S. Mastrangelo et al., 2018; Z. Pan et al., 2019); PDGFD (C. Wei et al., 2015; S. Mastrangelo et al., 2018); genes of the Homeobox family (D. Kang et al., 2017; A.A. Yurchenko et al., 2019; A. Ahbara et al., 2019); SP9 (Z. Yuan et al., 2017; D. Kang et al., 2017); WDR92 and ETAA1 (Z. Yuan et al., 2017; L. Ma et al., 2018); CREB1 (S.S. Xu et al., 2017; L. Ma et al., 2018); FABP4 (M.R. Bakhtiarizadeh et al., 2013; B. Li et al., 2018); PPARA, RXRA, KLF11, ADD1, FASN, PPP1CA and PDGFA (C. Zhu et al., 2016; Q. Ma et al., 2017). To search for candidate genes involved in the formation of a fat tail phenotype in the Russian sheep breeds a QTL mapping resource sheep population was established by crossing the long-fat-tailed Karachaev and the short-thin-tailed Romanov breeds, to perform a genome-wide association study.

Keywords: domestic sheep, fat tail, fat rump, genetic marker, SNP, DNA chips, RNA-seq, GWAS, CNV.



  1. Belous A.A., Sermyagin A.A., Kostyunina O.V., Brem G., Zinov'eva N.A. study of genetic architecture of feed conversion rate in duroc young boars (Sus scrofa) based on the genome-wide SNP analysis. Agricultural Biology[Sel'skokhozyaistvennaya biologiya], 2019, 54(4): 705-712 CrossRef
  2. Nejati-Javaremi A., Izadi F., Rahmati G., Moradi M. Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight. Int. J. Agri. Biol., 2007, 9(4): 645-648.
  3. Davidson A. The Oxford companion to food. Oxford University Press, Oxford, UK, 1999.
  4. Wei C., Wang H., Liu G., Wu M., Cao J., Liu Z., Liu R., Zhao F., Zhang L., Lu J., Liu C., Du L. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics, 2015, 16: 194 CrossRef
  5. Alves S.P., Bessa R.J.B., Quaresma M.A.G., Kilminster T., Scanlon T., Oldham C., Milton J., Greeff J., Almeida A.M. Does the fat tailed Damara ovine breed have a distinct lipid metabolism leading to a high concentration of branched chain fatty acids in tissues? PLoS ONE, 2013, 8(10): e77313 CrossRef
  6. Dunin I.M., Dankvert A.G. Spravochnik porod i tipov sel'skokhozyaistvennykh zhivotnykh, razvodimykh v Rossiiskoi Federatsii [Directory of farm animals breeds and types bred in the Russian Federation]. Moscow, 2013 (in Russ.).
  7. Perry C. The fate of the tail. In: Disappearing foods: studies in food and dishes at risk: Proceedings of the Oxford symposium on food and cookery. H. Walker (ed.). Pro-spect Books, UK, 1995.
  8. Hajihosseinlo A., Jafari S., Ajdary M. The relationship of GH and LEP gene poly-morphisms with fat-tail measurements (fat-tail dimensions) in fat-tailed Makooei breed of Iranian sheep. Adv. Biomed. Res., 2015, 4: 172 CrossRef
  9. Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G., McEwan J.C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 2012, 13: 10 CrossRef
  10. Zeder M.A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proceedings of the National Academy of Sciences, 2008, 105(33): 11597-11604 CrossRef
  11. Hiendleder S., Kaupe B., Wassmuth R., Janke A. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc. R. Soc. Lond. B., 2002, 269(1494): 893-904 CrossRef
  12. Rezaei H.R., Naderi S., Chintauan-Marquier I.C., Taberlet P., Virk A.T., Naghash H.R., Rioux D., Kaboli M., Luikart G., Pompanon F. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Molecular Phylogenetics and Evolution, 2010, 54(2): 315-326 CrossRef
  13. Demirci S., Koban Baştanlar E., Dağtaş N.D., Pişkin E., Engin A., Özer F., Yüncü E., Doğan S.A., Togan İ. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep. PLoS ONE, 2013, 8(12): e81952 CrossRef
  14. Ryder M.L. Sheep and man. Gerald Duckworth & Co. Ltd., London, 1983.
  15. Epstein H. The Awassi sheep with special reference to the improved dairy type. FAO Animal production and health paper, 1985, 57: 282.
  16. Kashan N.E.J., Azar G.H.M., Afzalzadeh A., Salehi A. Growth performance and carcass quality of fattening lambs from fat-tailed and tailed sheep breeds. Small Ruminant Research, 2005, 60(3): 267-271 CrossRef
  17. Lv F.H., Peng W.F., Yang J., Zhao Y.X., Li W.R., Liu M.J., Ma Y.H., Zhao Q.J., Yang G.L., Wang F., Li J.Q., Liu Y.G., Shen Z.Q., Zhao S.G., Hehua E., Gorkhali N.A., Farhad Vahidi S.M., Muladno M., Naqvi A.N., Tabell J., Iso-Touru T., Bruford M.W., Kantanen J., Han J.L., Li M.H. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Molecular Biology and Evolution, 2015, 32(10): 2515-2533 CrossRef
  18. Zhao Y.X., Yang J., Lv F.H., Hu X.J., Xie X.L., Zhang M., Li W.R., Liu M.J., Wang Y.T., Li J.Q., Liu Y.G., Ren Y.L., Wang F., Hehua E., Kantanen J., Arjen Lenstra J., Han J.L., Li M.H. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Molecular Biology and Evolution, 2017, 34(9): 2380-2395 CrossRef
  19. Deniskova T.E., Dotsev A.V., Selionova M.I., Kunz E., Medugorac I., Reyer H., Wimmers K., Barbato M., Traspov A.A., Brem G., Zinovieva N.A. Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol., 2018, 50(1): 29 CrossRef
  20. Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C.B., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Res., 2015, 24(1): 147-153 CrossRef
  21. Zhou S., Yu H., Zhao X., Cai B., Ding Q., Huang Y., Li Y., Li Y., Niu Y., Lei A., Kou Q., Huang X., Petersen B., Ma B., Chen Y., Wang X. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility and Development, 2018, 30(12): 1616-1621 CrossRef
  22. Zinovieva N.A., Volkova N.A., Bagirov V.A. Genome editing: state of the art and application to animal husbandry. Biotekhnologiya, 2018, 34(3): 9-22 CrossRef
  23. Rochus C.M., Tortereau F., Plisson-Petit F., Restoux G., Moreno-Romieux C., Tosser-Klopp G., Servin B. Revealing the selection history of adaptive loci using genome-wide scans for selection: an example from domestic sheep. BMC Genomics, 2018, 19(1): 71 CrossRef
  24. García-Gámez E., Reverter A., Whan V., McWilliam S.M., Arranz J.J., Consortium ISG, Kijas J. Using regulatory and epistatic networks to extend the findings of a genome scan: identifying the gene drivers of pigmentation in merino sheep. PLoS ONE, 2011, 6(6): e21158 CrossRef
  25. Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan J., Dalrymple B., International Sheep Genomics Consortium Members. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 2012, 10(2): e1001258 CrossRef
  26. Fariello M.I., Servin B., Tosser-Klopp G., Rupp R., Moreno C., Consortium ISG, San Cristobal M., Boitard S. Selection signatures in worldwide sheep populations. PLoS ONE, 2014, 9(8): e103813 CrossRef
  27. Fleming-Waddell J.N., Olbricht G.R., Taxis T.M., White J.D., Vuocolo T., Craig B.A., Tellam R.L., Neary M.K., Cockett N.E., Bidwell C.A. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS ONE, 2009, 4(10): e7399 CrossRef
  28. Moioli B., Scatà M.C., Steri R., Napolitano F., Catillo G. Signatures of selection identify loci associated with milk yield in sheep. BMC Genet., 2013, 14: 76 CrossRef
  29. Liu Z.H., Ji Z.B., Wang G.Z., Chao T.L., Hou L., Wang J.M. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics, 2016, 17(1): 863 CrossRef
  30. Demars J., Cano M., Drouilhet L., Plisson-Petit F., Bardou P., Fabre S., Servin B., Sarry J., Woloszyn F., Mulsant P., Foulquier D., Carrière F., Aletru M., Rodde N., Cauet S., Bouchez O., Pirson M., Tosser-Klopp G., Allain D. Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from modern woolly sheep. Molecular Biology and Evolution, 2017, 34(7): 1722-1729 CrossRef
  31. Mcrae K.M., McEwan J.C., Dodds K.G., Gemmell N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics, 2014, 15: 637 CrossRef
  32. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population-structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  33. Porto-Neto L.R., Lee S.H., Lee H.K., Gondro C. Detection of signatures of selection using FST. In: Methods in molecular biology (methods and protocols). C. Gondro, J. van der Werf, B. Hayes (eds.). Humana Press, Totowa, NJ, 2013, vol. 1019: 423-436 CrossRef
  34. Fariello M.I., Boitard S., Naya H., SanCristobal M., Servin B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 2013, 193(3): 929-941 CrossRef
  35. Moioli B., Pilla F., Ciani E. Signatures of selection identify loci associated with fat tail in sheep. Journal of Animal Science, 2015, 93(10): 4660-4669 CrossRef
  36. Mikawa S., Sato S., Nii M., Morozumi T., Yoshioka G., Imaeda N., Yamaguchi T., Hayashi T., Awata T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet., 2011, 12: 5 CrossRef
  37. Kim E.S., Elbeltagy A.R., Aboul-Naga A.M., Rischkowsky B., Sayre B., Mwacharo J.M., Rothschild M.F. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 2016, 116: 255-264 CrossRef
  38. Pan Z., Li S., Liu Q., Wang Z., Zhou Z., Di R., An X., Miao B., Wang X., Hu W., Guo X., Lv S., Li F., Ding G., Chu M., Li Y. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails. BMC Genomics, 2019, 20(1): 261 CrossRef
  39. Mastrangelo S., Moioli B., Ahbara A., Latairish S., Portolano B., Pilla F, Ciani E. Genome-wide scan of fat-tail sheep identifies signals of selection for fat deposition and adaptation. Animal Production Science, 2018, 59(5): 835-848 CrossRef
  40. Mastrangelo S., Bahbahani H., Moioli B., Ahbara A., Al Abri M., Almathen F., da Silva A., Belabdi I., Portolano B., Mwacharo J.M., Hanotte O., Pilla F., Ciani E. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE, 2019, 14(6): e0209632 CrossRef
  41. Yuan Z., Liu E., Liu Z., Kijas J.W., Zhu C., Hu S., Ma X., Zhang L., Du L., Wang H., Wei C. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet., 2017, 48(1): 55-66 CrossRef
  42. Szatkowski C., Vallet J., Dormishian M., Messaddeq N., Valet P., Boulberdaa M., Metzger D., Chambon P., Nebigil C.G. Prokineticin receptor 1 as a novel suppressor of preadipocyte proliferation and differentiation to control obesity. PLoS ONE, 2013, 8(12): e81175 CrossRef
  43. Liu C.T., Monda K.L., Taylor K.C., Lange L., Demerath E.W., Palmas W., Wojczynski M.K., Ellis J.C., Vitolins M.Z., Liu S., Papanicolaou G.J., Irvin M.R., Xue L., Griffin P.J., Nalls M.A., Adeyemo A., Liu J., Li G., Ruiz-Narvaez E.A., Chen W.M., Chen F., Henderson B.E., Millikan R.C., Ambrosone C.B., Strom S.S., Guo X., Andrews J.S., Sun Y.V., Mosley T.H., Yanek L.R., Shriner D., Haritunians T., Rotter J.I., Speliotes E.K., Smith M., Rosenberg L., Mychaleckyj J., Nayak U., Spruill I., Garvey W.T., Pettaway C., Nyante S., Bandera E.V., Britton A.F., Zonderman A.B., Rasmussen-Torvik L.J., Chen Y.D., Ding J., Lohman K., Kritchevsky S.B., Zhao W., Peyser P.A., Kardia S.L., Kabagambe E., Broeckel U., Chen G., Zhou J., Wassertheil-Smoller S., Neuhouser M.L., Rampersaud E., Psaty B., Kooperberg C., Manson J.E., Kuller L.H., Ochs-Balcom H.M., Johnson K.C., Sucheston L,. Ordovas J.M., Palmer J.R., Haiman C.A., McKnight B., Howard B.V., Becker D.M., Bielak L.F., Liu Y., Allison M.A., Grant S.F., Burke G.L., Patel S.R., Schreiner P.J., Borecki I.B., Evans M.K., Taylor H., Sale M.M., Howard V., Carlson C.S., Rotimi C.N., Cushman M., Harris T.B., Reiner A.P., Cupples L.A., North K.E., Fox C.S. Genome-wide association of body fat distribution in African ancestry populations suggests new loci. PLoS Genetics, 2013, 9(8): e1003681 CrossRef
  44. Mallo M., Wellik D.M., Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Developmental Biology, 2010, 344(1): 7-15 CrossRef
  45. Yurchenko A.A., Deniskova T.E., Yudin N.S., Dotsev A.V., Khamiruev T.N., Selionova M.I., Egorov S.V., Reyer H., Wimmers K., Brem G., Zinovieva N.A., Larkin D.M. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics, 2019, 20(Suppl 3): 294 CrossRef
  46. Ahbara A., Bahbahani H., Almathen F., Al Abri M., Agoub M.O., Abeba A., Kebede A., Musa H.H., Mastrangelo S., Pilla F., Ciani E., Hanotte O., Mwacharo J.M. Genome-wide variation and putative candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet., 2019, 9: 699 CrossRef
  47. Ahbara A., Musa H., Clark E., Robert C., Watson M., Abeba A., Latairish S., Hanotte O., Mwacharo J. OP196 indigenous African sheep genomes reveal insights on fat-tail deposition and morphology. Proc. 37th International Conference on Animal Genetics. Lleida, Spain, 2019: 56.
  48. Zhi D., Da L., Liu M., Cheng C., Zhang Y., Wang X., Li X., Tian Z., Yang Y., He T., Long X., Wei W., Cao G. Whole genome sequencing of Hulunbuir short-tailed sheep for identifying candidate genes related to the short-tail phenotype. G3: Genes, Genomes, Genetics, 2018, 8(2): 377-383 CrossRef
  49. Liu Z., Wang H., Liu R., Mingming W.U., Zhang S., Zhang L., Zhao F., Du L., Wei C. Genome-wide detection of selection signatures of distinct tail types in sheep popula-tions. Acta Veterinaria et Zootechnica Sinica, 2015, 46(10): 1721-1732 CrossRef
  50. Mwacharo J.M., Kim E.S., Elbeltagy A.R., Aboul-Naga A.M., Rischkowsky B.A., Rothschild M.F. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts. Sci. Rep., 2017, 7(1): 17647 CrossRef
  51. Sermyagin A.A., Gladyr' E.A., Kharitonov S.N., Ermilov A.N., Strekozov N.I., Brem G., Zinov'eva N.A. Genome-wide association study for milk production and reproduction traits in Russian Holstein cattle population. Agricultural Biology[Sel'skokhozyaistvennaya biologiya], 2015, 51(2): 182-193 CrossRef
  52. Jonas E., Thomson P.C., Raadsma H.W. Genome-wide association study and fine mapping of QTL on OAR 21 for body weight in sheep. Proc. 9th World Congress on Genetics Applied to Livestock Production. Leipzig, 2010.
  53. Kominakis A., Hager-Theodorides A.L., Zoidis E., Saridaki A., Antonakos G., Tsiamis G. Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol., 2017, 49: 41 CrossRef
  54. Xu S.S., Ren X., Yang G.L., Xie X.L., Zhao Y.X., Zhang M., Shen Z.Q., Ren Y.L., Gao L., Shen M., Kantanen J., Li M.H. Genome-wide association analysis identifies the genetic basis of fat deposition in the tails of sheep (Ovis aries). Anim. Genet., 2017, 48(5): 560-569 CrossRef
  55. Bhanuprakash V., Chhotaray S., Pruthviraj D.R., Rawat C., Karthikeyan A., Panigrahi M. Copy number variation in livestock: a mini review. Veterinary World, 2018, 11(4): 535-541 CrossRef
  56. Stranger B.E., Forrest M.S., Dunning M., Ingle C.E., Beazley C., Thorne N., Redon R., Bird C.P., de Grassi A., Lee C., Tyler-Smith C., Carter N., Scherer S.W., Tavaré S., Deloukas P., Hurles M.E., Dermitzakis E.T. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 2007, 315(5813): 848-853 CrossRef
  57. Liu G.E., Ventura M., Cellamare A., Chen L., Cheng Z., Zhu B., Li C., Song J., Eichler E.E. Analysis of recent segmental duplications in the bovine genome. BMC Genomics, 2009, 10: 571 CrossRef
  58. Zhang F., Gu W., Hurles M.E., Lupski J.R. Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 2009, 10: 451-481 CrossRef
  59. Fontanesi L., Beretti F., Martelli P.L., Colombo M., Dall'Olio S., Occidente M., Portolano B., Casadio R., Matassino D., Russo V. A first comparative map of copy number variations in the sheep genome. Genomics, 2011, 97(3): 158-165 CrossRef
  60. Jenkins G.M., Goddard M.E., Black M.A., Brauning R., Auvray B., Dodds K.G., Kijas J.W., Cockett N., McEwan J.C. Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics, 2016, 17: 441 CrossRef
  61. Liu J., Zhang L., Xu L., Ren H., Lu J., Zhang X., Zhang S., Zhou X., Wei C., Zhao F., Du L. Analysis of copy number variations in the sheep genome using 50K SNP BeadChip array. BMC Genomics, 2013, 14: 229 CrossRef
  62. Ma Y., Zhang Q., Lu Z., Zhao X., Zhang Y. Analysis of copy number variations by SNP50 BeadChip array in Chinese sheep. Genomics, 2015, 106(5): 295-300 CrossRef
  63. Zhu C., Fan H., Yuan Z., Hu S., Ma X., Xuan J., Wang H., Zhang L., Wei C., Zhang Q., Zhao F., Du L. Genome wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Scientific Reports, 2016, 6: 27822 CrossRef
  64. Ma Q., Liu X., Pan J., Ma L., Ma Y., He X., Zhao Q., Pu Y., Li Y., Jiang L. Genome-wide detection of copy number variation in Chinese indigenous sheep using an ovine high-density 600 K SNP array. Scientific Reports, 2017, 7: 912 CrossRef
  65. Hoeijmakers W.A., Bártfai R., Stunnenberg H.G. Transcriptome analysis using RNA-Seq. In: Malaria. Methods in molecular biology (methods and protocols). R. Ménard (ed.). Humana Press, Totowa, NJ, 2012, vol. 923: 221-239 CrossRef
  66. Shendure J. The beginning of the end for microarrays? Nature Methods, 2008, 5(7): 585-587 CrossRef
  67. Oshlack A., Robinson M.D., Young M.D. From RNA-seq reads to differential expression results. Genome Biol., 2010, 11(12): 220 CrossRef
  68. Wang X., Zhou G., Xu X., Geng R., Zhou J., Yang Y., Yang Z., Chen Y. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene, 2014, 549(2): 252-257 CrossRef
  69. Kang D., Zhou G., Zhou S., Zeng J., Wang X., Jiang Y., Yang Y., Chen Y. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci. Rep., 2017, 7(1): 14491 CrossRef
  70. Ma L., Li Z., Cai Y., Xu H., Yang R., Lan X. Genetic variants in fat- and short-tailed sheep from high-throughput RNA-sequencing data. Anim. Genet., 2018, 49(5): 483-487 CrossRef
  71. Ma L., Zhang M., Jin Y., Erdenee S., Hu L., Chen H., Cai Y., Lan X. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep. Front. Genet., 2018, 9: 365 CrossRef
  72. Li B., Qiao L., An L., Wang W., Liu J., Ren Y., Pan Y., Jing J., Liu W. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genomics, 2018, 19(1): 338 CrossRef
  73. Avilés C., Polvillo O., Peña F., Juárez M., Martínez A.L., Molina A. Associations between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef. Journal of Animal Science, 2013, 91(10): 4571-4577 CrossRef
  74. Xu Q.L., Tang G.W., Zhang Q.L., Huang Y.K., Liu Y.X., Quan K., Zhu K.Y., Zhang C.X. The FABP4 gene polymorphism is associated with meat tenderness in three Chinese native sheep breeds. Czech Journal of Animal Science, 2011, 56(1): 1-6.
  75. Bokor S., Legry V., Meirhaeghe A., Ruiz J.R., Mauro B., Widhalm K., Manios Y., Amouyel P., Moreno L.A., Molnàr D., Dallongeville J., HELENA Study group. Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity, 2010, 18(7): 1398-1403 CrossRef
  76. Kern P.A., Di Gregorio G.B., Lu T., Rassouli N., Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes, 2003, 52(7): 1779-1785 CrossRef
  77. Zhang L., Yang M., Li C., Xu Y., Sun J., Lei C., Lan X., Zhang C., Chen H. Identification and genetic effect of a variable duplication in the promoter region of the cattle ADIPOQ gene. Anim. Genet., 2014, 45(2): 171-179 CrossRef
  78. Erdenee S., Li J., Kang Z., Xu H., Zang R., Cao X., Yang J., Cai Y., Lan X. Sheep zinc finger proteins 395 (ZNF395): insertion/deletion variations, associations with growth traits, and mRNA expression. Animal Biotechnology, 2019, 19: 1-8 CrossRef
  79. Bakhtiarizadeh M.R., Moradi-Shahrbabak M., Ebrahimie E. Underlying functional genomics of fat deposition in adipose tissue. Gene, 2013, 521(1): 122-128 CrossRef
  80. Ruixia X., Lei G., Weili Z., Wei Z., Guangchao S., Shangquan G., Guoqing S. [Analysis of FABP4 expression pattern in rump fat deposition and metabolism of Altay sheep]. Yi Chuan, 2015, 37(2): 174-182 CrossRef
  81. Bakhtiarizadeh M.R., Salami S.A. Identification and expression analysis of long noncoding RNAs in fat-tail of sheep breeds. G3: Genes, Genomes, Genetics, 2019, 9(4): 1263-1276 CrossRef
  82. Jiao X.L., Jing J.J., Qiao L.Y., Liu J.H., Li L.A., Zhang J., Jia X.L., Liu W.Z. Ontogenetic expression of Lpin2 and Lpin3 genes and their associations with traits in two breeds of Chinese fat-tailed sheep. Asian-Australasian Journal of Animal Sciences, 2016, 29(3): 333-342 CrossRef
  83. Zakariapour Bahnamiri H., Ganjkhanlou M., Zali A., Sadeghi M., Moradi Shahrbabak H., Nehzati Paghaleh G.A. Expression of genes related to liver fatty acid metabolism in fat-tailed and thin-tailed lambs during negative and positive energy balances. J. Anim. Physiol. Anim. Nutr., 2019, 103(2): 427-435 CrossRef
  84. Zeng J., Zhou S.W., Zhao J., Jin M.H., Kang D.J., Yang Y.X., Wang X.L., Chen Y.L. Role of OXCT1 in ovine adipose and preadipocyte differentiation. Biochemical and Biophysical Research Communications, 2019, 512(4): 779-785 CrossRef
  85. Ledur M.C., Navarro N., Pérez-Enciso M. Large-scale SNP genotyping in crosses between outbred lines: how useful is it? Heredity, 2009, 105(2): 173-182 CrossRef






Full article PDF (Rus)

Full article PDF (Eng)