doi: 10.15389/agrobiology.2019.6.1236eng

UDC: 636.3:619:578:577.2



K.P. Alekseev1, S.A. Raev1, A.G. Yuzhakov1, E.V. Shemelkov1, O.E. Latyshev1, O.V. Eliseeva1, L.V. Kostina1, V.V. Tsibezov1, V.V. Stafford2, K.Yu. Kunakov1, O.A. Verkhovsky3, A.D. Zaberezhny2, T.I. Aliper1

1LLC Vetbiochem, 3/9-2, 3-i Syromyatnicheskii per., Moscow, 105120 Russia, e-mail (✉ corresponding author),,,,,,,,;
2Federal Scientific Centre VIEV, 24-1, Ryazanskii prosp., Moscow, 109428 Russia, e-mail,;
3ANO Diagnostic and Prevention Research Institute for Human and Animal Diseases, 16, ul. Gamaleya, Moscow, 123098 Russia, e-mail


Alekseev K.P.
Tsibezov V.V.
Raev S.A.
Stafford V.V.
Yuzhakov A.G.
Kunakov K.Yu.
Shemelkov E.V.
Verkhovsky O.A.
Latyshev O.E.
Zaberezhny A.D.
Eliseeva O.V.
Aliper T.I.
Kostina L.V.

Received July 16, 2019


Classical swine fever (CSF), the highly contagious viral disease, remains the major threat to pork industry in top ten pork producing countries save the United States. Disease outbreaks and following restrictions in international trade are causing major economic losses worldwide. Wild boars are the natural reservoir of the virus. They represent high danger to pork industry in regions with high density of wild boar population. Live attenuated vaccine has been used in Russia for decades for the total swine population vaccination. Today Russia belongs to world leaders in the pork production, but it still has to be recognized as CSF virus (CSFV) free country (or region) to be incorporated in a global market. The first step in this direction would be the implementation of non-replicating marker vaccines, allowing the differentiation between infected and vaccinated animals (DIVA). Here we first report results of recombinant E2 protein-based vaccine formulations trial in Russian Federation, where optimal administration protocol, adjuvant, dosage of specific component were selected. From the formulations tested, safe and effective vaccine formulation was selected, that needs to be tested for antigen stability and immunity duration in vaccinated animals, and then undergo clinical trial on farm. The aim of our study is the development of the vaccine based on CSFV recombinant surface glycoprotein E2 according to requirements for the country/region free of CSFV. We performed the series of animal trials on Sus scrofa landrace-duroc breed (total number of pigs 84, divided into 9 experimental and 2 control groups) to assess the vaccination schedule, antigen dosage, and choice of adjuvant. Highly pathogenic CSFV Shi-Men strain was used for challenge in 5×105 LD50 dose (ARRIAH collection). Double shot introduction of 10 mg or 30 mg of antigen as well as single shot with 30 or 60 mg of E2 had not provided sufficient level of protection. Oil adjuvant was reactogenic at the inoculation spot even when used once, while polymeric adjuvant has not produced local or systemic reactions after the administration single time or twice. Double administration with the vaccine containing 60 µg of the antigen and polymeric adjuvant has completely protected pigs from the death after the challenge, while in non-vaccinated/challenged control group 5 out of 11 animals died within 14 days post-challenge. Vaccinated animals had less pronounced fever that lasted shorter (rise of the rectal temperature was delayed for 2 days, release of fever 2 days before the control challenge group), frequency and longevity of viremia and virus shedding in nasal swabs were significantly (p ≤ 0.05) reduced as compared to inoculated control piglets. Animals in this vaccinated group gained weight every day after the challenge, being slightly behind non-vaccinated/non-challenged controls. The high levels of antibodies against E2 protein were detected in sera of vaccinated animals before the challenge and they all were negative for antibodies to Erns protein. After the challenge antibodies to Erns proteins started to raise in sera of all animals save non-vaccinated/non-challenged controls, thus we developed the product that may be implemented as a marker vaccine against CSFV.


Keywords: Classical swine fever, subunit vaccine, CSF E2, adjuvant, vaccine development.



  1. Chander V., Nandi S., Ravishankar C., Upmanyu V., Verma R. Classical swine fever in pigs: recent developments and future perspectives. Animal Health Research Reviews, 2014, 15(1): 87-101 CrossRef
  2. Beltran-Alcrudo D., Falco J.R., Raizman E., Dietze K. Transboundary spread of pig diseases: the role of international trade and travel. BMC Veterinary Research, 2019, 15(1): 64 CrossRef
  3. Zhou B. Classical swine fever in China — an update minireview. Frontiers in Veterinary Science, 2019, 6: 187 CrossRef
  4. Sergeev V.A., Orlyankin B.G., Alekseev K.P., Zaberezhnyi A.D., Aliper T.I., Nepoklonov E.A. Veterinariya, 2018, 4: 3-11.
  5. Kirkland P.D., Le Potier M.-F., Vannier P., Finlaison D. Pestiviruses. In: Diseases of swine. J.J. Zimmerman, L.A. Karriker, A. Ramirez, K.J. Schwartz, G.W. Stevenson (eds.). Wiley-Blackwell, 2012: 538-553.
  6. Rümenapf T., Meyers G., Stark R., Thiel H.J. Molecular characterization of hog cholera virus. In: Ruminant Pestivirus infections. Archives of Virology (Supplementum 3), vol. 3. B. Liess, V. Moennig, J. Pohlenz, G. Trautwein (eds.). Springer, Vienna, 1991: 7-18 CrossRef
  7. Lindenbach B.D., Muttay C.L., Thiel H.J. Flaviviridae. In: Fields virology. D.M. Knipe, P.M. Howley (eds.). Lippincott Williams and Wilkins, Philadelphia, 2013: 712-746.
  8. Thiel H.J., Stark R., Weiland E., Rümenapf T., Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. Journal of Virology, 1991, 65: 4705-4712.
  9. Wang F.I., Deng M.C., Huang Y.L., Chang C.Y. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses, 2015, 7(7): 3506-3529 CrossRef
  10. Weiland E., Stark R., Haas B., Rümenapf T., Meyers G., Thiel H.J. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. Journal of Virology, 1990, 64(8): 3563-3569.
  11. Nepoklonov E.A., Aliper T.I., Leneva I.A. Voprosy virusologii, 1999, 2: 54-60 (in Russ.).
  12. Chang C.Y., Huang C.C., Lin Y.J., Deng M.C., Chen H.C., Tsai C.H., Chang W.M., Wang F.I. Antigenic domains analysis of classical swine fever virus E2 glycoprotein by mutagenesis and conformation-dependent monoclonal antibodies. Virus Research, 2010, 149(2): 183-189 CrossRef
  13. Schroeder S., von Rosen T., Blome S., Loeffen W., Haegeman A., Koenen F., Uttenthal A. Evaluation of classical swine fever virus antibody detection assays with an emphasis on the differentiation of infected from vaccinated animals. Revue Scientifique et Technique (International Office of Epizootics), 2012, 31(3): 997-1010 CrossRef
  14. Nepoklonov E.A. Klassicheskaya chuma svinei: razrabotka metodov laboratornoi diagnostiki i sredstv spetsificheskoi profilaktiki. Doktorskaya dissertatsiya [Classical swine fever: the development of laboratory diagnostic methods and means of specific prevention. DSc Thesis]. Moscow, 2000 (in Russ.).
  15. Blome S., Mos C., Reimann I., König P., Beer M. Classical swine fever vaccines — State-of-the-art. Veterinary Microbiology, 2017, 206: 10-20 CrossRef
  16. Larson K.L., Zaabel P., Spickler A.R., Roth J.A. NAHEMS Guidelines: Vaccination for Contagious Diseases, Appendix B: Vaccination for Classical Swine Fever. USDA, 2017.
  17. Hulst M.M., Westra D.F., Wensvoort G., Moormann R.J. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. Journal of Virology, 1993, 67: 5435-5442.
  18. König M., Lengsfeld T., Pauly T., Stark R., Thiel H.-J. Classical swine fevervirus: independent induction of protective immunity by two structural glycoproteins. Journal of Virology, 1995, 69: 6479-6486.
  19. Huang Y.-L., Denga M.-C., Fun-In Wang F.-I., Huang C.-C., Chang C.-Y. The challenges of classical swine fever control: Modified live and E2 subunit vaccines. Virus Research, 2014, 179: 1-11 CrossRef
  20. Dong X.N., Chen Y.H. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine, 2007, 25(2): 205-230 CrossRef
  21. Krivonos A.V., Zaberezhnyi A.D., Grebennikova T.V., Aliper T.I., Musienko M.I., Gibadulin R.A., Tsibezov V.V., Bogdanova V.S., Kal'nov S.L., Aliper T.I., Nepoklonov E.A. Voprosy virusologii, 2000, 2: 29-36 (in Russ.).
  22. Tsibezov V.V., Bogdanova V.S., Zaberezhnyi A.D., Grebennikova T.V., Krivonos A.V., Dudnikov L.A., Kal'nov S.L., Aliper T.I., Nepoklonov E.A. Voprosy virusologii, 2000, 2: 36-41 (in Russ.).
  23. Klinkenberg D., Moormann R.J.M., de Smit A.J., Bouma A., de Jong M.C.M. Influence of maternal antibodies on efficacy of a subunit vaccine: transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age. Vaccine, 2002, 20: 3005-3013 CrossRef
  24. Lipowski A., Drexler C., Pejsak Z. Safety and efficacy of a classical swine fever subunit vaccine in pregnant sows and their offspring. Veterinary Microbiology, 2000, 77(1-2): 99-108 CrossRef
  25. van Oirschot J.T. Vaccinology of classical swine fever: from lab to field. Veterinary Microbiology, 2003, 96(4): 367-384 CrossRef
  26. Bouma A., de Smit A.J., de Kluijver E.P., Terpstra C., Moormann R.J. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Veterinary Microbiology, 1999, 66(2): 101-114 CrossRef
  27. Madera R., Gong W., Wang L., Burakova Y., Lleellish K., Galliher-Beckley A., Nietfeld J., Henningson J., Jia K., Li P., Bai J., Schlup J., McVey S., Tu C., Shi J. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge. BMC Veterinary Research, 2016, 12(1): 197 CrossRef
  28. Suárez M., Sordo Y., Prieto Y., Rodríguez M.P., Méndez L., Rodríguez E.M., Rodríguez-Mallon A., Lorenzo E., Santana E., González N., Naranjo P., Frías M.T., Carpio Y., Estrada M.P. A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus. Vaccine, 2017, 35(34): 4437-4443 CrossRef
  29. van Rijn P.A., Miedema G.K., Wensvoort G., van Gennip H.G., Moormann R.J. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. Journal of Virology, 1994, 68(6): 3934-3942.
  30. Yu M., Wang L.F., Shiell B.J., Morrissy C.J., Westbury H.A. Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology, 1996, 222(1): 289-292 CrossRef
  31. Huang Y.L., Deng M.C., Wang F.I., Huang C.C., Chang C.Y. The challenges of classical swine fever control: modified live and E2 subunit vaccines. Virus Research, 2014, 179: 1-11 CrossRef
  32. Vlasova A., Grebennikova T., Zaberezhny A., Greiser-Wilke I., Floegel-Niesmann G., Kurinnov V., Aliper T., Nepoklonov E. Molecular epidemiology of classical swine fever in the Russian Federation. Journal of Veterinary Medicine and Infectious Disease Veterinary Public Health, 2003, 50(8): 363-367 CrossRef
  33. Titov I., Tsybanov S., Malogolovkin A. Genotyping of classical swine fever virus using high-resolution melt analysis. Journal of Virological Methods, 2015, 224: 53-57 CrossRef






Full article PDF (Rus)

Full article PDF (Eng)