doi: 10.15389/agrobiology.2019.6.1110eng

UDC: 636.2:577.21:577.088

The equipment of the Sharing Center for Farm Animal Bioresources and Bioengineering (FSC for Animal Husbandry) was used.
Supported financially by Russian Science Foundation, project No. 19-76-20012



A.S. Abdelmanova1, A.I. Mishina1, V.V. Volkova 1, R.Yu. Chinarov1,
A.A. Sermyagin1, A.V. Dotsev1, O.I. Boronetskaya2, L.V. Petrikeeva2,
O.V. Kostyunina1, G. Brem1, 3, N.A. Zinovieva1

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail,,, (✉ corresponding author);
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail,;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail

Abdelmanova A.S.
Boronetskaya O.I.
Mishina A.I.
Petrikeeva L.V.
Kostyunina O.V.
Chinarov R.Yu.
Brem G.
Sermyagin A.A.
Zinovieva N.A.
Dotsev A.V.

Received September 3, 2019


The development of molecular-genetic methods allows elucidating the origin and demographic history of breeds of farm animals. Samples of bones and teeth maintained in craniological collections can serve as a source of DNA for such studies. The work with historical samples is complicated by the presence of a very low quantity of DNA, the high degree of its degradation and by the contamination of samples by PCR inhibitors. The aim of this work was the comparison of the efficiency of various methods of DNA extraction from historical cattle skulls, suitable for molecular genetic studies. The material was teeth extracted from historical skulls of cattle of the Yaroslavl and Kholmogor breeds stored in the craniological collection of the Liskun Museum of Livestock (Timiryazev Russian State Agrarian University—Moscow Agrarian Academy). At the first stage, we compared various DNA isolation methods implemented in the form of commercial kits, i.e. Prep Filer™ BTA Forensic DNA Extraction Kit («Thermo Fisher Scientific Inc.», USA), COrDIS Extract decalcine («GORDIZ» LLC, Russia), M-sorb-bone («Syntol» LLC, Russia), QIAamp DNA Investigator Kit («Qiagen», USA), with the modification of the amount of bone material and conditions of lylis. Based on preliminary research results, we selected for more detailed studies two kits, the QIAamp DNA Investigator Kit («Qiagen», USA) which implements the technology of column with silica gel membrane, and Prep Filer™ BTA Forensic DNA Extraction Kit («Thermo Fisher Scientific Inc.», USA) which is based on using magnetic particles. The quantitative and qualitative characteristics of the obtained DNA were evaluated by measuring the concentration of double-stranded DNA using a Qubit™ fluorimeter («Invitrogen, Life Technologies», USA) and determining the ratio of the absorption at 260 nm and 280 nm (OD260/280) on a NanoDrop 8000 instrument («Thermo Fisher Scientific, Inc.», USA). The suitability of the obtained DNA extracts for molecular genetic studies was assessed based on the multiplex analysis of 11 microsatellite loci (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH225, BM1824) as well as genome-wide genotyping on high-density DNA chips containing 777 thousand SNPs (Bovine HD BeadChip, «Illumina, Inc.», USA). Concentrations of double-stranded DNA (dsDNA) obtained using QIAamp DNA Investigator Kit and Prep Filer™ BTA Forensic DNA Extraction Kit ranged from 0.146 ng/µl to 2.060 ng/µl and from 0.110 ng/µl to 13,600 ng/µl, respectively, and averaged 0.83±0.23 ng/µl and 2.75±1.33 ng/µl. The correlation coefficient (r) between the concentrations of dsDNA in isolations DNA obtained by two different methods was 0.84. Analysis of microsatellites showed that each of the samples has its own unique genotype which differs from other historical and modern samples of individuals. Efficiency of SNP genotyping (Call Rate) of the historical samples was 0.533-0.878 and 0.958-0.977 for DNA preparations produced using QIAamp DNA Investigator Kit и Prep Filer™ BTA Forensic DNA Extraction Kit, respectively. The results of microsatellite analysis and SNP genotyping, on the one hand, indicate the suitability of the obtained DNA for polymorphism research, on the other hand, confirm the compliance of the laboratory in which this analysis was performed with the authenticity criteria for working with ancient DNA. Conducting large-scale studies of historical samples using different types of DNA markers will clarify the origin and demographic history of domestic cattle breeds and develop effective programs for their conservation.

Keywords: historical DNA, craniological collection, DNA extraction, microsatellite analysis, SNP genotyping, cattle, local breeds.



  1. Zinovieva N.A., Sermyagin A.A., Dotsev A.V., Boronetskaya O.I., Petrikeeva L.V., Abdelmanova A.S., Brem G. Animal genetic resources: developing the research of allele pool of Russian cattle breeds — minireview. Agricultural Biology [Sel’skokhozyaistvennaya Biologiya], 2019, 54(4): 631-641 CrossRef
  2. Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, 362(6422): 709-715 CrossRef
  3. Orlando L., Ginolhac A., Zhang G., Froese D., Albrechtsen A., Stiller M., Schubert M., Cappellini E., Petersen B., Moltke I., Johnson P.L., Fumagalli M., Vilstrup J.T., Raghavan M., Korneliussen T., Malaspinas A.S., Vogt J., Szklarczyk D., Kelstrup C.D., Vinther J., Dolocan A., Stenderup J., Velazquez A.M., Cahill J., Rasmussen M., Wang X., Min J., Zazula G.D., Seguin-Orlando A., Mortensen C., Magnussen K., Thompson J.F., Weinstock J., Gregersen K., RøedK.H., Eisenmann V., Rubin C.J., Miller D.C., Antczak D.F., Bertelsen M.F., Brunak S., Al-Rasheid K.A., Ryder O., Andersson L., Mundy J., Krogh A., Gilbert M.T., Kjær K., Sicheritz-Ponten T., Jensen L.J., Olsen J.V., Hofreiter M., Nielsen R., Shapiro B., Wang J., Willerslev E. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 2013, 99(7456): 74-78 CrossRef
  4. Pääbo S., Higuchi R.G., Wilson A.C. Ancient DNA and the polymerase chain reaction: the emerging field of molecular archaeology (minireview). The Journal of Biological Chemistry, 1989, 264(17): 9709-9712.
  5. Ward R., Stringer C. A molecular handle on the Neanderthals. Nature, 1997, 388: 225-226 CrossRef
  6. Cooper A., Poinar H.N. Ancient DNA: do it right or not at all. Science, 2000, 289(5482): 1139 CrossRef
  7. Lindahl T. Recovery of antediluvian DNA. Nature, 1993, 365(6448): 700 CrossRef
  8. Handt O., Krings M., Ward R.H., Pääbo S. The retrieval of ancient human DNA sequences. Am. J. Hum. Genet., 1996, 59: 368-376.
  9. Cooper A. DNA from museum specimens. In: Ancient DNA. B. Herrmann, S. Hummel (eds.). Springer-Verlag, NY, 1993: 149-165 CrossRef
  10. Greenwood A.D., Capelli C., Possnert G., Pääbo S. Nuclear DNA sequences from late Pleistocene megafauna. Molecular Biology and Evolution, 1999, 16(11): 1466-1473 CrossRef
  11. Hagelberg E., Sykes B., Hedges R. Ancient bone DNA amplified. Nature, 1989, 342: 485 CrossRef
  12. Hänni C., Brousseau T., Laudet V., Stehelin D. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Research, 1995, 23(5): 881-882 CrossRef
  13. Hansen H.B., Damgaard P.B., Margaryan A., Stenderup J., Lynnerup N., Willerslev E., Allentoft M.E. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS ONE, 2017, 12(1): e0170940 CrossRef
  14. Höss M., Pääbo S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Research, 1993, 21(16): 3913-3914 CrossRef
  15. Kalmár T., Bachrati C.Z., Marcsik A., Raskó I. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Research, 2000, 28(12): e67 CrossRef
  16. Pääbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proceedings of the National Academy of Sciences, 1989, 86(6): 1939-1943 CrossRef
  17. Hofreiter M., Jaenicke V., Serre D., von Haeseler A., Pääbo S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research, 2001, 29(23): 4793-4799 CrossRef
  18. Hansen A.J., Mitchell D.L., Wiuf C., Paniker L., Brand T.B., Binladen J., Gilichinsky D.A., Rønn R., Willerslev E. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics, 2006, 173(2) 1175-1179 CrossRef
  19. Rohland N., Hofreiter M. Comparison and optimization of ancient DNA extraction. Biotechniques, 2007, 42(3): 343-352 CrossRef
  20. Leonard J.A., Wayne R.K., Cooper A. Population genetics of ice age brown bears. Proceedings of the National Academy of Sciences, 2000, 97(4): 1651-1654 CrossRef
  21. Hofreiter M., Rabeder G., Jaenicke-Després V., Withalm G., Nagel D., Paunovic M., Jambrĕsić G., Pääbo S. Evidence for reproductive isolation between cave bear populations. Current Biology, 2004, 14(1): 40-43 CrossRef
  22. Rohland N., Glocke I., Aximu-Petri A., Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc., 2018, 13: 2447-2461 CrossRef
  23. Bowtell D.D. Rapid isolation of eukaryotic DNA. Analytical Biochemistry, 1987, 162(2): 463-465 CrossRef
  24. Mohammadi A., Ghorbani Alvanegh A., Khafaei M., Habibi Azarian S., Naderi M., Kiyani E., Miri A., Bahmani H., Ramezani M., Tavallaei M. A new and efficient method for DNA extraction from human skeletal remains usable in DNA typing. Journal of Applied Biotechnology Reports, 2017, 4(2): 609-614.
  25. Tolosa J.M., Schjenken J.E., Civiti T.D., Clifton V.L., Smith R. Column-based method to simultaneously extract DNA, RNA, and proteins from the same sample. Biotechniques, 2007, 43(6): 799-804 CrossRef
  26. Saiyed Z.M., Bochiwal C., Gorasia H., Telang S.D., Ramchand C.N. Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Analytical Biochemistry, 2006, 356(2): 306-308 CrossRef
  27. Suffys P., Vanderborght P.R., dos Santos P.B., Correa L.A.P., Bravin Y., Kritski A.L. Inhibition of the polymerase chain reaction by sputum samples from tuberculosis patients after processing using a silica-guanidiniumthiocyanate DNA isolation procedure. Memórias do Instituto Oswaldo Cruz, 2001, 96(8): 1137-1139 CrossRef
  28. Palomo-Díez S., Martínez-Labarga C., Gomes C., Esparza-Arroyo Á., Rickards O., Arroyo-Pardo E. Comparison of two different DNA extraction methodologies for critical bone or teeth samples. Forensic Science International: Genetics Supplement Series, 2017, 6: E359-E361 CrossRef
  29. Gamba C., Hanghøj K., Gaunitz C., Alfarhan A.H., Alquraishi S.A., Al‐Rasheid K.A., Bradley D.G., Orlando L. Comparing the performance of three ancient DNA extraction methods for high‐throughput sequencing. Molecular Ecology Resources, 2016, 16(2): 459-469 CrossRef
  30. Brauner A. Porody sel'skokhozyaistvennykh zhivotnykh. Krupnyi rogatyi skot [Breeds of farm animals. Cattle]. Odessa, 1922 (in Russ.).
  31. Boronetskaya O.I., Barbosova M.E., Nikiforov A.I., Bykova A.V., Mikheenkov V.E., Rabadanova G.Sh., Petrikeeva L.V., Polurotova A.I., Rukavitsina E.A. Katalog kraniologicheskoi kollektsii akademika E.F. Liskuna /Pod. redaktsiei V.P. Panova [Catalog of the craniological collection of academician E.F. Liskuna. V.P. Panov (ed.)]. Moscow, 2012 (in Russ.).
  32. Robin E.D., Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol., 1988, 136(3): 507-513 CrossRef
  33. Pääbo S., Poinar H., Serre D., Jaenicke-Després V., Hebler J., Rohland N., Kuch M., Krause J., Vigilant L., Hofreiter M. Genetic analyses from ancient DNA. Annual Review of Genetics, 2004, 38: 645-679 CrossRef
  34. Nei M. Genetic distance between populations. The American Naturalist, 1972, 106(949): 283-292.
  35. Langella O. Populations 1.2.32 (02/13/2011): a population genetic software. CNRS UPR9034. 1999. Available dostupa: No date.
  36. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 2006, 23(2): 254-267 CrossRef
  37. Vanek D., Silerova M., Urbanova V., Saskova L., Dubska J., Beran M., Genomic DNA extraction protocols for bone samples: the comparison of Qiagen and Zymo Research spin columns. Forensic Science International: Genetics Supplement Series, 2011, 3(1): e397-e398 CrossRef
  38. Scorrano G., Valentini F., Martínez-Labarga C., Rolfo M. F., Fiammenghi A., Lo Vetro D., Martini F., Casoli A., Ferraris G., Palleschi G., Palleschi A., Rickards O. Methodological strategies to assess the degree of bone preservation for ancient DNA studies. Annals of Human Biology, 2014, 42(1): 10-19 CrossRef
  39. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Wimmers K., Reyer H., Sölkner J., Deniskova T.E., Brem G. Study of genetic diversity and population structure of five Russian cattle breeds using whole genome SNP analysis. Agricultural Biology [Sel’skokhozyaistvennaya Biologiya], 2016, 51: 788-800 CrossRef
  40. Sermyagin A.A., Dotsev A.V., Gladyr E.A., Traspov A.A., Deniskova T.E., Kostyunina O.V., Reyer H., Wimmers K., Barbato M., Paronyan I.A., Plemyashov K.V., Sölkner J., Popov R.G., Brem G., Zinovieva N.A. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genet. Sel. Evol., 2018, 50(1): 37 CrossRef
  41. Petren K., Grant P.R., Grant B.R., Clack A.A., Lescano N.V. Multilocus genotypes from Charles Darwin's finches: biodiversity lost since the voyage of the Beagle. Phil. Trans. R. Soc. B, 2010, 365: 1009-1018 CrossRef
  42. Allentoft M., Heller R., Holdaway R., Bunce M. Ancient DNA microsatellite analyses of the extinct New Zealand giant moa (Dinornis robustus) identify relatives within a single fossil site. Heredity, 2015, 115: 481-487 CrossRef
  43. Bourke B.P., Frantz A.C., Lavers C.P., Davison A., Dawson D.A., Burke T.A. Genetic signatures of population change in the British golden eagle (Aquila chrysaetos). Conserv. Genet., 2010, 11(5): 1837-1846 CrossRef
  44. Knapp M, Hofreiter M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes, 2010, 1(2): 227-243 CrossRef