doi: 10.15389/agrobiology.2018.6.1212eng

UDC 636.52/.58:576.3/.7: 577.21:57.086.83

Acknowledgements:
Supported financially by Russian Science Foundation (grant No. 16-16-10059, study of roosters with transplanted donor spermatogonia) and within the Program of Federal Agency of Scientific Organization (Agreement No. АААА-А18-118021590132-9, study of transgenic roosters produced with the use of lentiviral vectors)

 

REPRODUCTIVE QUALITY OF ROOSTERS WITH NORMAL
AND MODIFIED GENOME

N.A. Volkova, A.N. Vetokh, B.S. Iolchiev, M.A. Zhilinskiy, L.A. Volkova,
E.K. Tomgorova, N.A. Zinovieva

Ernst Federal Science Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail natavolkova@inbox.ru (✉ corresponding author), anastezuya@mail.ru, ludav@inbox.ru, tomgorova@rambler.ru, n_zinovieva@mail.ru

ORCID:
Volkova N.A. orcid.org/0000-0001-7191-3550
Volkova L.A. orcid.org/0000-0002-9407-3686
Vetokh A.N. orcid.org/0000-0002-2865-5960
Tomgorova E.K. orcid.org/0000-0001-5398-8815
Iolchiev B.S. orcid.org/0000-0001-5386-726
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Zhilinskiy M.A. orcid.org/0000-0002-5541-9517
The authors declare no conflict of interests

Received September 17, 2018

 

To date, progress has been made in the production of transgenic poultry: effective gene constructs have been obtained, and efficient systems for recombinant DNA delivery into target cells have been created. However, when breeding a genetically modified poultry, problems may arise with transgenic offspring, in particular its low viability or limited number. This paper is the first to report on histological structure of the testes and the composition of spermatogenic cells in the seminiferous tubules of transgenic roostersand on the quality and fertilizing ability of their semen. The study was carried out on transgenic roosters which were obtained by us in different ways based on chicken (Gallus gallus L.) Pervomaiskaya breed and their non-transgenic analogues (vivarium of Ernst Federal Science Center for Animal Husbandry, 2017-2018). Group I was transgenic roosters after introduction of the lentiviral vector pWRSV into chicken embryos in vivo (n = 4); Group II was transgenic roosters obtained by transplantation of transformed  in vitro donor spermatogonia into the testes of sterile recipient roosters (n = 5). The control group included non-transgenic roosters selected as analogues (breed, age). Sperm was collected once every 2-3 days in penicillin vials heated to 30 °C by abdominal massage carried by the same technician. The following semen indicators were investigated: ejaculate volume, sperm motility and concentration in the ejaculate, the head and acrosome area, total spermatozoa length, flagella length. The criteria for evaluation of the fertilizing capacity of semen were the egg fertilization and the hatching of the younger generation. The histological structure of the seminiferous tubules and the composition of spermatogenic cells were also studied. Our experiments show that the quantitative and qualitative indicators of sperm in transgenic roosters decrease compared to the control. The volume of ejaculate, the concentration and motility of spermatozoa were 19, 15 and 1 % lower in Group I and 38, 29 and 2 % lower in Group II. However, there are no deviations in the safety of the acrosome in transgenic roosters when compared to the control individuals. Histological analysis of testes of the transgenic and non-transgenic roosters also reveals no significant pathological disturbances in the seminiferous tubules. Nevertheless, an insignificant decrease in the number of spermatogenic cells in transgenic individuals occurs when compared to the control ones (up to 19 %). The fertilizing capacity of the transgenic roosters’ semen is also lower than that of the control roosters. In Group I the differences with the control group for the percentage of chick hatching were 15 %, in the Group 2 — 10 % (р < 0.05),  which may indicate some negative effect of the integration of the transgene on the functional state of the germ cells in the studied genetically modified individuals.

Keywords: roosters, Gallus gallus L., transgenesis, gene constructs, transplantation, gene-transformed spermatogonia, acrosome, spermatozoon, semen quality, fertilizing ability, hatching.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Zinov'eva N.A., Volkova N.A., Bagirov V.A., Brem G. Ekologicheskaya genetika, 2015, 13(2): 58-76 (in Russ.).
  2. Scott B.B., Velho T.A., Sim S., Lois C. Applications of avian transgenesis. ILAR J., 2010, 51(4): 353-361.
  3. Brazolot C.L., Petitte J.N., Etches R.J., Verrinder Gibbins A.M. Efficient transfection of chicken cells by lipofection, and introduction of transfected blastodermal cells into the embryo. Mol. Reprod. Dev., 1991, 30(4): 304-312 CrossRef
  4. Fraser R.A., Carsience R.S., Clark M.E., Etches R.J., Gibbins A.M. Efficient incorporation of transfected blastodermal cells into chimeric chicken embryos. Int. J. Dev. Biol., 1993, 37(3): 381-385.
  5. Chojnacka-Puchta L., Kasperczyk K., Plucienniczak G., Sawicka D., Bednarczyk M. Primordial germ cells (PGCs) as a tool for creating transgenic chickens. Pol. J. Vet. Sci., 2012, 15(1): 181-188 CrossRef
  6. Macdonald J., Glover J.D., Taylor L., Sang H.M., McGrew M.J. Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE, 2010, 5: e15518 CrossRef
  7. Han J.Y. Germ cells and transgenesis in chickens. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(2): 61-80 CrossRef
  8. Scott V.B., Lois C. Generation of tissue-specific trans­genic birds with lentiviral vectors. PNAS USA, 2005, 102(45): 16443-16447 CrossRef
  9. Kalina J., Senigl F., Micáková A., Mucksová J., Blazková J., Yan H., Poplstein M., Hejnar J., Trefil P. Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction, 2007, 134(3): 445-453 CrossRef
  10. Kuwana T., Kawashima T., Naito M., Yamashita H., Matsuzaki M., Takano T. Conservation of a threatened indigenous fowl (Kureko dori) using the germline chimeras transplanted from primordial germ cells. J. Poult. Sci., 2006, 43(1): 60-66 CrossRef
  11. Naito M., Harumi T., Kuwana T. Long term in vitro culture of chicken primordial germ cells isolated from embryonic blood and incorporation into germline of recipient embryo. J. Poult. Sci., 2010, 47(1): 57-64 CrossRef
  12. Li B., Sun G., Sun H., Xu Q., Gao B., Zhou G., Zhau W., Wu X., Bao W., Yu F., Wang K., Chen G. Efficient generation of transgenic chickens using the SSCs in vivo and ex vivo transfection. Science in China Series C: Life Sciences, 2008, 51(8): 734-742 CrossRef
  13. Yu F., Ding L.J., Sun G.B., Sun P.X., He X.H., Ni L.G., Li B.C. Transgenic sperm produced by electrotransfection and allogeneic transplantation of chicken fetal spermatogonial stem cells. Mol. Reprod. Dev., 2010, 77: 340-347.
  14. Tyack S.G., Jenkins K.A., O’Neil T.E., Wise T.G., Morris K.R., Bruce M.P., McLeod S., Wade A.J., McKay J., Moore R.J., Schat K.A., Lowenthal J.W., Doran T.J. A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Res., 2013, 22(6): 1257-1264 CrossRef
  15. Min S., Qing S.Q., Hui Y.Y., Zhi F.D., Rong Q.Y., Feng X., Chun L.B. Generation of antiviral transgenic chicken using spermatogonial stem cell transfected in vivo. Afr. J. Biotechnol., 2011, 10(70): 15678-15683.
  16. Mozdziak P.E., Borwornpinyo S., McCoy D.W., Petitte J.N. Development of transgenic chickens expressing bacterial beta-galactosidase. Dev. Dyn., 2003, 226(3): 439-445 CrossRef
  17. Byun S.J., Kim S.W., Kim K.W., Kim J.S., Hwang I.-S., Chung H.K., Kan I.S., Jeon I.-S., Chang W.-K., Park S.-B., Yoo J.G. Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Bioscience, Biotechnology, and Biochemistry, 2011, 75(4): 646-649 CrossRef.
  18. Lillico S.G., Sherman M.J., McGrew C.D., Robertson C.D., Smith J., Haslam C., Barnard P., Radcliffe P.A., Mitrophanous K.A., Elliot E.A. Oviduct-specific expression of two therapeutic proteins in transgenic hens. PNAS USA, 2007, 104(6): 1771-1776 (doi:  10.1073/pnas.0610401104).
  19. Kwon S.C., Choi J.W., Jang H.J., Shin S.S., Lee S.K., Park T.S., Choi I.Y., Lee G.S., Song G., Han J.Y. Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol. Reprod., 2010, 82(6): 1057-1064 CrossRef
  20. Aibazov M.M., Mamontova T.V., Kholmova E.V. Sbornik nauchnykh trudov Vserossiiskogo nauchno-issledovatel'skogo instituta ovtsevodstva i kozovodstva,2016, 2(9): 67-72 (in Russ.). 
  21. Kozikova L.V., Rosokhatskii S.I., Yakovlev A.F., Medvedev S.Yu. Tsitologiya, 2005, 47(9): 814-815 (in Russ.).
  22. Mikroskopicheskaya tekhnika /Pod redaktsiei D.S. Sarkizova, Yu.P. Perova [Microcopy technique. D.S. Sarkizov, Yu.P. Perov (eds.)]. Moscow, 1996 (in Russ.).  
  23. Junqueira L.C., Carneiro J. Gistologiya [Histology]. Moscow, 2009 (in Russ.).  
  24. Aibazov M.M., Aksenova P.V. Vestnik veterinarii, 2010, 3(54): 59-64 (in Russ.).
  25. Deikin A.V., Ermolkevich T.G., Gurskii Ya.G., Krasnov A.N., Georgieva S.G., Kuznetsov S.L., Derevyanko V.G., Novikova N.I., Murashev A.N., Gol'dman I.L., Sadchikova E.R. Doklady Akademii nauk, 2009, 427(4): 545-548 (in Russ.).  
  26. Kalmykov S.P. Zootekhniya, 2008, 5: 28-30 (in Russ.).  

back