doi: 10.15389/agrobiology.2018.6.1190eng

UDC 636.934.571:591.05

 

POSTNATAL CHANGES IN MINK (Mustela vision) MINERAL
METABOLISM ASSESSED BY MICRO- AND MACROELEMENTS
IN BLOOD AND FUR

I.N. Staroverova, V.I. Maksimov, N.A. Balakirev, S.Yu. Zaitsev

Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika K.I. Skryabina, Moscow, 109472 Russia, e-mail irina_starovierova@mail.ru (✉ corresponding author), dr.maximov@gmail.com, sci@mgavm.ru, szaitsev@mail.ru

ORCID:
Staroverova I.N. orcid.org/0000-0003-3762-9956
Zaitsev S.Yu. orcid.org/0000-0003-1533-8680
Maksimov V.I. orcid.org/0000-0002-5305-0218
The authors declare no conflict of interests

Received October 17, 2017

 

Mineral deficiency remains relevant in fur farming. That is why researchers are still developing methods to test whether mineral supply of animals is sufficient. Fur, unlike blood which composition strongly depends on many factors, is convenient biomaterial to control mineral levels in animal body. In this paper, we revealed a relationship between the blood and hair mineral composition and studied for the first time whether these parameters reliably reflect mineral welfare of the standard male minks fed with commonly used diets. Standard male minks of Saltykovskii breeding farm (Moscow Province) were grouped by age. Male minks, due to sexual dimorphism, are twice as large as females and all changes in their body manifest more quickly and reliably. Blood and hair were sampled from healthy standard male minks during postnatal ontogenesis, i.e. in 30-day-old animals and in 90-day-old animals, additionally, hair samples were taken from male minks aged 2 months, 7 months and 12 months. Contents of macro- and microelements were measured by atomic emission and mass spectrometry using an optical emission spectrometer Optima 2000TM DV and ELAN 9000 ICP-MS mass spectrometer (Hitachi, AIC, Inc, Japan). The skin development during ontogenesis was controlled histologically. Hair condition was studied by electronic scanning microscopy (Hitachi-S-520, Hitachi, AIC, Inc, Japan). It was found that reference contents of macro- and microelements in blood and hairs of standard male minks are characteristic of each phase of postnatal ontogenesis. In blood, the concentrations (mmol/l) averaged 1.6-4.2 for calcium, (2.7-9.9)×10-5 for cobalt, (0.23-1.00)×10-3 for chromium, (0.53-2.10)×10-2 for copper, 5.9-11.3 for iron, (1.5-6.3)×10-3 for iodine, 29-44 for potassium, 0.64-1.23 for magnesium, (0.35-2.70)×10-2 for manganese, 82-103 for sodium, 4.8-21 for phosphorus, (1.8-6.3)×10-3 for selenium, and 0.24-0.89 for zinc. The blood levels of all these elements were maximal in one-month and three-month old minks and minimal at sexual maturity and body maturation of the animals. In hairs, the average contents (mmol/kg) were 4.5-8.5 for calcium, (0.92-2.70)×10-4 for cobalt, (2.3-7.9)×10-3 for chromium, (0.20-0.73)×10-1 for copper, (1.02-4.10)×10-1 for iron, (1.58-7.20)×10-3 for iodine, 0.44-1.70 for potassium, 0.70-1.92 for magnesium, (0.38-1.70)×10-2 for manganese, 9.1-39 for sodium, 0.97-2.40 for phosphorus, (2.0-4.6)×10-3 for selenium, and 0.28-0.46 for zinc. Accumulation of the most important elements in the mink hair was maximal during 30 days of life and minimal in 7-month old animals. Mineral compositions of blood and hair of standard male minks correlate and depend on the animals’ age. The strong and moderate (positive and negative) correlations are found for 8 elements, Ca, Mg, Na, P, Co, Cr, Se and I. For all 13 elements studied, there are reliable correlations between their levels in animal hairs and in the diets. Apparently, the mineral composition of hairs can be used as a test of dietary balance of mineral elements for each age of the standard mink.

Keywords: Mustela vision, mink, postnatal ontogenesis, mineral metabolism, mineral composition of blood, mineral composition of hair.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Suttle N.F. Mineral nutrition of livestock. CAB International, 2000.
  2. Lopez-Alonso M. Trace minerals and livestock: not too much not too little. ISRN Vet. Sci., 2012, 2012: Article ID 704825 CrossRef
  3. Klopov M.I., Maksimov V.I. Biologicheski aktivnye veshchestva v fiziologicheskikh i biokhimicheskikh protsessakh v organizme zhivotnogo [Bioactive substabces in physiological and biochemical processes in nimals]. St. Petersburg, 2012 (in Russ.).
  4. Dayyani N., Abadi M.B.B., Farhani A.A.A. Chelated minerals in animal nutrition. Int. J. Adv. Bio. Biom. Res., 2013, 1(11): 1387-1391.
  5. Olson R.A., Brink D.R., Carlson M., Hickook D.T., Shcneider N., Deutscher G.H., Colburn D.J. Effect of supplementing trace minerals (Cu, Co, Zn and Mn) after calving on productivity of two-year-old cows. Nebraska Beef Cattle Reports,1997, 1(1): 15-17.
  6. Staroverova I.N., Maksimov V.I., Zaitsev S.Yu. Doklady RASKHN, 2010, 3: 41-43 (in Russ.).
  7. Nikonova E.B., Maksimov V.I. Veterinarnaya patologiya, 2006, 3: 128-132 (in Russ.).
  8. Maksimov V.I., Lysov V.F. Vestnik Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2006, 2: 21-22 (in Russ.).
  9. Zhao X.J., Li Z.P., Wang J.H., Xing X.M., Wang Z.Y., Wang L., Wang Z.H. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. J. Vet. Sci., 2015, 16(4): 439-446 CrossRef
  10. Martins P.S., Kallas E.G., Neto M.S., Dalboni M.A., Bleche S., Salomao R. Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock, 2003, 20(3): 208-212 CrossRef
  11. Brink A.-L., Jeppesen L.L. Behavior of mink kits and dams (Mustela vison) in the lactation period. Canadian Journal of Animal Science, 2005, 85(1): 7-12 CrossRef
  12. Canids — foxes, wolves, jackals and dogs: status survey and conservation action plan. C. Sillero-Zubiri, M. Hoffmann, D.W. McDonald (eds.). N.Y., USA, 2004.
  13. Allen R.G., Tresini M. Oxidative stress and gene regulation. Free Radical Biology and Medicine, 2000, 28(3): 463-499 CrossRef
  14. Barabasz V., Bagdonas I.I. Studies on the nutrition of young mink after melatonin implantation. Annals of Animal Science (Krakow), 2000, 727(2): 117-128.
  15. Plotnikov I.A., Bespyatyh O.Y., Gazizov V.Z., Domski I.A. Characteristics and optimization of husbandry conditions of herbivorous fur-bearing animals. Scientifur, 2000, 24 (4): 170-171.
  16. Staroverova I.N., Balakirev A.N. Uchenye zapiski Kazanskoi gosudarstvennoi akademii veterinarnoi meditsiny im. N.E. Baumana, 2013, 214: 386-392 (in Russ.).
  17. López Alonso M., Prieto Montaña F., Miranda M., Castillo C., Hernández J.,  Benedito J.L. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. BioMetals, 2004, 17(4): 389-397.
  18. Bis-Wencel H., Saba L., Ondrasovicova O., Wnuk W., Pyzik-Moleda M. The level of some plasma oxidative state indices in farmed minks and the histopathological picture of their internal organs. Folia Veterinaria (Kosice), 2005, 49(3—suppl.): S45-S47.
  19. Staroverova I.N., Maksimov V.I., Zaitsev S.YU., Egorov V.V., Kordonskaya M.A. Veterinarnaya meditsina, 2009, 3: 47-49 (in Russ.).
  20. Combs D.K., Goodrich R.D., Meiske J.C. Mineral concentrations in hair as indicators of mineral status: a review. J. Anim. Sci., 1982, 54(2): 391-398.
  21. Poulsen H.D. Zn and copper as feed additives, growth factors or unwanted environmental factors. J. Anim. Feed Sci., 1998, 7(suppl. 1): 135-142 CrossRef
  22. Balakirev N.A., Zaitsev S.Yu., Rizvanov A.A. Phenozan influence on the physiological-biochemical parameters of the young minks leading to their advanced properties. International Journal of Zoology, 2016, 2016: Article ID 2159509 CrossRef
  23. Pushkina N.N. Biokhimicheskie metody issledovaniya [Biochemical analysis]. Moscow, 1963 (in Russ.).
  24. Shimmel' G. Metodika elektronnoi mikroskopii [Methods of electrone microscopy]. Moscow, 1972 (in Russ.).
  25. Mepkylov G.A. Kurs patologo-gistologicheskoi tekhniki [Pathohistological methods]. Leningrad, 1969 (in Russ.).
  26. Maksimov V.I. Gormonal'nyi status organov molodnyaka krupnogo rogatogo skota i ovets. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 2001, 2: 60-63.
  27. Ugryumov M.B. Neiroendokrinnaya regulyatsiya v ontogeneze [Neuroendocrine regulation in ontogenys]. Moscow, 1989 (in Russ.).
  28. Olesen C.R., Clausen T.N., Warnberg S. Compositional changes in mink (Mustela vison) milk during lactation. Norwegian Journal of Agricultural Sciences, 1992, 9(suppl.): 308-314.
  29. Tumova E., Zita L., Siolc L. Carcass quality in restricted and ad libitum fed rabbits. Czech Journal of Animal Science, 2006, 51(5): 214-219 CrossRef
  30. Vorob'ev, V.I., Ul'ikhina P.I. Mineral'nye veshchestva v zhizni krolikov [The metabolic role of minerals in rabits]. Astrakhan', 2007 (in Russ.).
  31. Damgaard B.M., Borsting C.F., lngvartsen K.L., Fink R. Effects of carbohydrate-free diets on the performance of lactating mink (Mustela vison) and the growth performance of suckling kits. Acta Agriculturae Scandinavica, Section A — Animal Science, 2003, 53(3): 127-135 CrossRef
  32. Damgaard B.M., Borsting C.F.,Engberg N.M., Jensen S.K. Effects of high dietary levels of fresh or oxidised fish oil on performance and blood parameters in female mink (Mustela vison) during the winter, reproduction, lactation and early growth periods. Acta Agriculturae Scandinavica, Section A — Animal Science, 2003, 53(3): 136-146 CrossRef
  33. Tyutyunnik N.N., Kalinin Yu.K., Unzhakov A.R., Meldo Kh.I., Dolgopolova T.G., Uzenbaeva L.B., Svechkina E.B., Il'ina T.N., Baishnikova I.V., Melekhova G.V. V sbornike: Problemy ekologicheskoi fiziologii pushnykh zverei [In: Ecophysiology of fur bearing anumals. Iss. 3]. Petrozavodsk, 2004‚ vyp. 3: 91-104 (in Russ.).
  34. Bailoni L., Cerchiaro l. The role of feeding in the maintenance of well-being and health of geriatric. Vet. Res. Commun., 2005, 29(Suppl. 2): 751-55 CrossRef
  35. Fuglesteg B.N., Haga Ø.E., Folkow L.P., Fuglei E. Seasonal variations in basal metabolic rate, lower critical temperature and responses to temporary starvation in the arctic fox (Alopex lagopus) from Svalbard. Polar Biology, 2006, 29(4): 308-319 CrossRef
  36. Akhmetova F.I. O dykhatel'noi aktivnosti mitokhondrii pecheni i skeletnykh myshts norok i nutrii v postnatal'nom ontogeneze. Sel'skokhozyaistvennayaBiologiya[AgriculturalBiology], 2001, 2: 48-51.
  37. Fink R., Borsting C.F. Quantitative glucose metabolism in lactating mink (Mustela vison) - effects of dietary levels of protein, fat and carbohydrates. Acta Agriculturae Scandinavica, Section A — Animal Science, 2002, 52(1): 71: 34-42 CrossRef
  38. Demina T.M. Vestnik VOGiS, 2007, 11(1): 205-211 (in Russ.).
  39. Balakirev A.N., Staroverova I.N., Maksimov V.I. Vestnik OrelGAU: Teoreticheskii i nauchno-prakticheskii zhurnal, 2014, 1(46): 17-21 (in Russ.).

back