doi: 10.15389/agrobiology.2018.6.1131eng

UDC 636:615.9:546.815

 

METABOLISM AND MECHANISMS OF CYTOTOXIC ACTION
OF THE LEAD IN MAMMALS (review)

E.B. Mirzoev, V.O. Kobyalko, I.V. Polyakova, O.A. Gubina

Russian Research Institute of Radiology and Agroecology, 109 km, Kievskoe sh., Obninks, Kaluzhskaya Province, 249032 Russia, e-mail mirzoev.ed@yandex.ru (✉ corresponding author), kobyalko@yandex.ru, irinaamchenkina@mail.ru, olgubina@yandex.ru

ORCID:
Mirzoev E.B. orcid.org/0000-0002-3182-9466
Polyakova I.V. orcid.org/0000-0003-1602-7921
Kobyalko V.O. orcid.org/0000-0001-8542-7748
Gubina O.A. orcid.org/0000-0002-4413-8373
The authors declare no conflict of interests

Received July 7, 2016

 

The real ecological situation in the Russian Federation is characterized by environmental pollution with lead compounds (V.V. Snakin, 1998). The mode of action, intake, distribution in animal body and excretion of this toxic heavy metal are substantial to establish its permissible limits and biological effects. These data are constantly replenished and require updating to reflect changes in climatic and environmental conditions, anthropogenic impacts, and geographic differences. Absorption of lead in the gastrointestinal tract (GIT) of mammals depends on the permeability of the membrane of intestinal epithelial cells and is influenced by physicochemical properties of a compound (concentration, particle size, mineralogical composition, solubility in the liquid environment of GIT, ionic potential, atomic mass), physiological feaatures of an organism (metabolism, body weight, age, gender, pregnancy, lactation), the diet composition and levels of protein, cellulose, calcium, zinc, iron, manganese, and vitamin D (J.A. Jamieson et al., 2006, D.J. Mac-Lachlan et al., 2016; O.A. Levander, 1979; C.J.C. Phillips et al., 2011). These factors characterize the parameters of uncertainty, which are partially excluded in determining the content of lead in the peripheral blood of mammals. In peripheral blood, lead is transported by red blood cells and accumulates mainly in the liver, kidneys and bones. In fact, the toxic effect of lead on mammals depends on its accumulation in organs and tissues. Lead is excreted from mammals with faeces and urine, as well as through wool, milk, sweat glands and fetus. The half-life of the metal from the soft tissues and peripheral blood is 24-40 days. The toxic effect of lead on the organs and tissues is due to a decrease in the cell number of (E.B. Mirzoev et al., 2015). Reducing of viable cell number to a certain critical level leads to functional violations and toxic effects. Activation of free radical lipid peroxidation (LPO) and violation of Ca2+ homeostasis are the main mechanisms of cytotoxic action of Pb2+ ions (G. Flora et al., 2012; A. Roy et al., 2016; E.A. Veal et al., 2007; A.W. Harman et al., 1995). Mechanisms of regulation of cellular metabolism include, on the one hand, changes in the intensity of the process of free radical LPO, and on the other hand, modifications of the lipid composition of membranes (E.B. Burlakova, 2007). Activation of free radical LPO by lead is due not only to the generation of reactive oxygen species, but also to a decrease in the activity of antioxidant enzymes, superoxide dismutase and catalase. Changes in the composition of biological membranes affect the activity of membrane-bound proteins, i.e. enzymes, channel-forming proteins, receptors, which affects Ca2+ homeostasis and cell functioning a whole (R. Jahn et al., 2003, A.H. Kahn-Kirby et al., 2004). Mitochondria which provide cells with energy play a role in the cytotoxic action of Pb2+ ions (M. Bragadin et al., 2007). The big data analysis on Pb pollution will determine the strategy for further study of lead action, as well as the methods to solve the problem.

Keywords: lead, cytotoxic effect, calcium, blood, organ, feed, absorption, lipid peroxidation.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Snakin V.V. Vestnik RAN, 1998, 68(3): 214-224 (in Russ.).
  2. Doklad o svintsovom zagryaznenii okruzhayushchei sredy Rossiiskoi Federatsii i ego vliyanii na zdorov'e naseleniya [Report on lead pollution of the environment of the Russian Federation and its impact on public health]. Moscow, 1997 (in Russ.).
  3. Gigienicheskie kriterii sostoyaniya okruzhayushchei sredy. Vypusk 3. Svinets [Hygienic criteria for the state of the environment. Issue 3. Lead]. Zheneva, 1980 (in Russ.).
  4. Jamieson J.A., Taylor C.G., Weiler H.A. Marginal zinc deficiency exacerbates bone lead accumulation and high dietary zinc attenuates lead accumulation at the expense of bone density in growing rats. Toxicol. Sci., 2006, 92(1): 286-294 CrossRef
  5. Levander O.A. Lead toxicity and nutritional deficiencies. Environ. Health Persp., 1979, 29: 115-125.
  6. Phillips C.J.C., Mohamed M.O., Chiy P.C. Effects of duration of exposure to dietary lead on rumen metabolism and the accumulation of heavy metals in sheep. Small Ruminant Research, 2011, 100:113-121 CrossRef
  7. Elgawish R.A.R., Abdelrazek H.M.A. Effects of lead on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicology Reports, 2014, 1: 795-801 CrossRef
  8. Pareja-Carrera J., Mateo R., Rodrigues-Estival J. Lead (Pb) in sheep exposed to mining pollution: Implications for animal and human health. Ecotoxicology and Environmental Safety, 2014, 108: 210-216 CrossRef
  9. MacLachlan D.J., Budd K., Connolly J., Derrick J., Penrose L., Tobin T. Arsenic, cadmium, cobalt, copper, lead, mercury, molybdenum, selenium and zinc concentrations in liver, kidney and muscle in Australian sheep. Journal of Food Composition and Analysis, 2016, 50: 97-107 CrossRef
  10. Moskalev Yu.I. Mineral'nyi obmen [Mineral metabolism]. Moscow, 1985 (in Russ.).
  11. Sel'skokhozyaistvennaya radioekologiya /Pod redaktsiei R.M. Aleksakhina, N.A. Korneeva [Agricultural radioecology. R.M. Aleksakhin, N.A. Korneev (eds.). Moscow, 1992 (in Russ.).
  12. Dieter M., Mathews H.B., Jeffcoat R.A., Moseman R.F. Comparison of lead bioavailability in F344 rats fed lead acetate, lead oxide, lead sulfide, or lead ore concentrate from Skagway, Alaska. J. Toxicol. Env. Health, 1993, 39(1): 79-93 CrossRef
  13. Korneev N.A., Sirotkin A.N. Osnovy radioekologii sel'skokhozyaistvennykh zhivotnykh [Basics of radioecology of farm animals]. Moscow, 1987 (in Russ.).
  14. Aungst B.J., Dolce J.A., Fung H.L. The effect of dose on the disposition of lead in rats after intravenous and oral administration. Toxicol. Appl. Pharm., 1981, 61(1): 48-57 CrossRef
  15. Kostial K. Specific features of metal absorption in suckling animals. In: reproductive and developmental toxicity of metals. T.W. Clarkson, G.F. Nordberg, P.R. Sager (eds.). Springer, Boston, MA, 1983: 727-744.
  16. Trakhtenberg I.M., Sova R.E., Shteftel' V.O., Onikienko F.A. Problema normy v toksikologii (sovremennye predstavleniya i metodicheskie podkhody, osnovnye parametry i konstanty) [The norm in toxicology (modern concepts and methodological approaches, basic parameters and constants)]. Moscow, 1991 (in Russ.).
  17. Bellinger D.C. Teratogen update: lead and pregnancy. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73: 409-425 CrossRef
  18. Keller C.A., Doherty R.A. Bone lead mobilization in lactating mice and lead transfer to sucking offspring. Toxicol. Appl. Pharm., 1980, 55: 220-228.
  19. Bhattacharyya M.H. Bioavailability of orally administered cadmium and lead to the mother, fetus and neonate during pregnancy and lactation: an overview. Sci. Total Environ., 1983, 28(1-3): 327-342 CrossRef
  20. Solaiman D., Jonah M.M., Miyazaki W., Ho G., Bhattacharyya M.H. Increased metallothionein in mouse liver, kidneys and duodenum during lactation. Toxicol. Sci., 2001, 60: 184-192.
  21. Andriyanova T.G. Morfologicheskie i funktsional'nye izmeneniya v organakh i tkanyakh zhivotnykh pri postuplenii v organizm soedinenii svintsa i kadmiya. Avtoreferat doktorskoi dissertatsii [Morphological and functional changes in the organs and tissues of animals when lead and cadmium compounds enter the body. DSc. Thesis]. Moscow, 2003 (in Russ.).
  22. Il'yazov R.G., Akhmetzyanov F.K., Zaisanov R.R., Gilemkhanov M.I. V knige: Problemy radiologii i agroekologii: Doklady nauchno-prakticheskoi konferentsii, posvyashchennoi 40-letiyu osnovaniya GNU VNIISKHRAE Rossel'khozakademii /Pod redaktsiei R.M. Aleksakhina [Chellenges in radiology and agroecology: Proc. of the conference dedicated to the 40th anniversary of VNIIShRAE. R.M. Aleksakhin (ed.)] Obninsk, 2012: 295-300 (in Russ.).
  23. Andrushaite R.E., Gailite B.E. Doklady VASKHNIL, 1987, 10: 35-37 (in Russ.).
  24. Gracheva O.G., Bokova T.I. Trudy Novosibirskogo gosudarstvennogo agrarnogo universiteta, 2003, 183(1): 287-292 (in Russ.).
  25. U.S. Environmental Protection Agency. Air quality criteria for lead. (Final Report, 2006). U.S. Environmental Protection Agency, Washington, DC. EPA/600/R-5/144aF-bF, 2006.
  26. U.S. Environmental Protection Agency. Integrated science assessment (ISA) for lead (Final Report, Jul. 2013). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-10/075F, 2013.
  27. Lugovskoi S.P., Legkostup L.A. Sovremennye problemy toksikologii, 2002, 2: 45-50 (in Russ.).
  28. Lyubchenko P.N. Intoksikatsionnye zabolevaniya organov pishchevareniya [Intoxication diseases of the digestive system]. Voronezh, 1990 (in Russ.).
  29. Lugovs'kii S.P. Fiziologichnii zhurnal, 2001, 47(2): 41-45 (in Russ.).
  30. Lugovskoi S.P. Sovremennye problemy toksikologii, 2004, 1: 22-26 (in Russ.).
  31. Smith D., Hernandez-Avila M., Téllez-Rojo M.M., Mercado A., Hu H. The relationship between lead in plasma and whole blood of women. Environ. Health Persp., 2002, 110(3): 263-268 CrossRef
  32. Bergdahl I.A., Sheveleva M., Schütz A., Artamonova V.G., Skerfving S. Plasma and blood lead in humans: capacity-limited binding to δ-aminolevulinic acid dehydratase and other lead-binding components. Toxicol. Sci., 1998, 46(2): 247-253 CrossRef
  33. Al-Modhefer A.J.A., Bradbury M.W.B., Simons T.J.B. Observations on the chemical nature of lead in human blood serum. Clin. Sci., 1992, 81(6): 823-829 CrossRef
  34. Carbone R., Laforgia N., Crollo E., Mautone A., Iolascon A. Maternal and neonatal lead exposure in southern Italy. Biol. Neonate, 1998, 73: 362-366 CrossRef
  35. IPCS Environmental health criteria 165. Inorganic lead. World Health Organization. Geneva, 1995.
  36. Mirzoev E.B., Kobyalko V.O., Polyakova I.V., Gubina O.A., Frolova N.A. Content of metallothioneins in the organs of sheep under chronic intake of lead with ration. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2015, 50(6): 839-846 CrossRef
  37. Mirzoev E.B., Kobyalko V.O., Polyakova I.V., Gubina O.A., Frolova. N.A. Toksikologicheskii vestnik, 2015, 6: 32-36 (in Russ.).
  38. Roy A., Kordas K. The relation between low-level lead exposure and oxidative stress: a review of the epidemiological evidence in children and non-occupationally exposed adults. Curr. Envir. Health Rpt., 2016, 3: 478-492 CrossRef
  39. Ighodaro O.M., Akinloye O.A. First line defense antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (CPX): Their fundamental role in the entire antioxidants defense grid. Alexandria Journal of Medicine, 2018, 54: 287-293 CrossRef
  40. Flora G., Gupta D., Tiwani A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 2012, 5(2): 47-58 CrossRef
  41. Reddy U.A., Prabhakar P.V., Rao G.S., Rao P.R., Sander K., Rahman M.F., Kumari S.I., Grover P., Khan H.A., Mahboob M. Biomarkers of oxidative stress in rat for assessing toxicological effects of heavy metal pollution in river water. Envir. Sci. Pollut. Res., 2015, 22(17): 13453-13463 CrossRef
  42. Linnane A.W., Kios M., Vitetta L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology, 2007, 8(5): 445-467 CrossRef
  43. Veal E.A., Day A.M., Morgan B.A. Hydrogen peroxide sensing and signaling. Mol. Cell, 2007, 26(1): 1-14 CrossRef
  44. Sandström B.E. Effects of quin2 acetoxymethyl ester on H2O2-induced DNA single-strand breakage in mammalian cells: H2O2-concentration-dependent inhibition of damage and additive protective effect with the hydroxyl-radical scavenger dimethyl sulphoxide. Biochem. J., 1995, 305(1): 181-185 CrossRef
  45. Burlakova E.B., Khrapova N.G. Uspekhi khimii, 1985, 54(9): 1540-1558 (in Russ.).
  46. Jahn R., Lang T., S?dhof T.C. Membrane fusion. Cell, 2003, 112(4): 519-533 CrossRef
  47. Kahn-Kirby A.H., Danrzker L.M., Apicella A.J. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell, 2004, 119(6): 889-900 CrossRef
  48. Burlakova E.B. Materialy Mezhdunarodnoi konferentsii «Novye napravleniya v radiobiologii» [Proc. Int. Conf. “New aspects of radiobiology]. Moscow, 2007: 3-9 (in Russ.).
  49. Simons T.J.B. The affinity of human erythrocyte porphobilinogen synthase for Zn2+ and Pb2+. FEBS J., 1995, 234(1): 178-183 CrossRef
  50. Ahamed M., Verma S., Kumar A., Siddigui M.K.J. Delta-aminolevulinic acid dehydratase inhibition and oxidative stress in relation to blood lead among urban adolescents. Hum. Exp. Toxicol., 2006, 25(9): 547-553 CrossRef
  51. Sakai T., Morita Y. δ-Aminolevulinic acid in plasma or whole blood as a sensitive indicator of lead effects, and its relation to the other home-related parameters. Int. Arch. Occup. Environ Health, 1996, 68(2): 126-132 CrossRef
  52. Hermes-Lima M., Pereira B., Bechara E.J.H. Are free radicals involved in lead poisoning? Xenobiotika, 1991, 21(8): 1085-1090 CrossRef
  53. Monteiro M.F., Abdalla D.S.P., Augusto O., Bechara E.J.H. Free radicals generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch. Biochem. Biophys., 1989, 271(1): 206-216 CrossRef
  54. Khan D.A., Qayyum S., Saleem S., Khan F.A. Lead-induced oxidative stress adversely affects health of the occupational workers. Toxicol. Ind. Health, 2008, 24(9): 611-618 CrossRef
  55. Ni Z., Hou S., Barton C.H., Vaziri N.D. Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney Int., 2004, 66(6): 2329-2336 CrossRef
  56. Harman A.W., Maxwell M.J. An evaluation of the role of calcium in cell injury. Annu. Rev. Pharmacol., 1995, 35: 129-144 CrossRef
  57. Orlov S.N. Uspekhi sovremennoi biologii, 1981, 91(1): 19-34 (in Russ.).
  58. Carafoli E. Calcium — a universal carrier of biological signals. FEBS J., 2005, 272(5): 1073-1089 CrossRef
  59. Shin J.H., Lim K.M., Noh J.Y., Bae O.N., Chung S.M., Lee M.Y., Chung J.H. Lead-induced procoagulant activation of erythrocytes through phosphatidylserine exposure may lead to thrombotic diseases. Chem. Res. Toxicol., 2007, 20(1): 38-43 CrossRef
  60. Li S., Zhengyan Z., Xielai Z., Suhang L. The effect of lead on intracellular Ca2+ in mouse lymphocytes. Toxicol. In Vitro, 2008, 22(8): 1815-1819 CrossRef
  61. Kharoubi O., Slimani M., Aoues A., Seddik L. Prophylactic effects of Wormwood on lipid peroxidation in an animal model of lead intoxication. Indian Journal of Nephrology, 2008, 18(2): 51-57 CrossRef
  62. Sivaprasad R., Nagaraj M., Varalakshmi P. Combined efficacies of lipoic asid and meso-2,3-dimercaptosuccinic asid on lead-induced erythrocyte membrane lipid peroxidation and antioxidant status in rats. Hum. Exp. Toxicol., 2003, 22(4): 183-192 CrossRef
  63. Calderón-Salinas J.V., Quintanar-Escorza M.A., Hernández-Luna C.E., González-Martínez M.T. Effect of lead on the calcium transport in human erythrocyte. Hum. Exp. Toxicol, 1999, 18(3): 146-153 CrossRef
  64. Mas-Oliva J. Effect of lead on the erythrocyte (Ca2+-Mg2+)-ATPase activity Calmodulin involment. Mol. Cell. Biochem., 1989, 89(1): 87-93 CrossRef
  65. Sun L.R., Suszkiw J.B. Extracellular inhibition and intracellular enhancement of Ca2+ currents by Pb2+ in bovine adrenal chromaffin cells. J. Neurophysiol., 1995; 74(2): 574-581 CrossRef
  66. Fehlau R., Grygorczyk R., Fuhrmann G.F., Schwarz W. Modulation of the Ca2+-or Pb2+- activated K+-selective channels in human red cells. 2. Parallelisms to modulation of the activity of a membrane-bound oxidoreductase. Biochim. Biophys. Acta, 1989, 978: 37-42.
  67. Markovac J., Goldstein G.W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 1988, 334(6177): 71-73 CrossRef
  68. Long G.J., Rosen J.F., Schanne F.A.X. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead and zinc by 19F NMR. J. Biol. Chem., 1994, 269(2): 834-837.
  69. Habermann E., Growell K., Janicki P. Lead and other metals can substitute for Ca2+ in calmodulin. Arch. Toxicol., 1983, 54(1): 61-70 CrossRef
  70. Richardt G., Federolf G., Habermann E. Affinity of heavy metal ions to intracellular Ca2+-binding proteins. Biochem. Pharmacol., 1986, 35(8): 1331-1335 CrossRef
  71. Wang L., Wang Z., Liu J. Protective effect of N-acetylcysteine on experimental chronic lead nephrotoxicity in immature female rats. Hum. Exp. Toxicol, 2010, 29(7): 581-591 CrossRef
  72. Marchlewicz M., Baranowska-Bosiaska I., Kolasa A., Kondarewicz A., Chlubek D., Wiszniewska B. Disturbances of energetic metabolism in rat epididymal epithelial cells as a consequence of chronic lead intoxication. BioMetals, 2009, 22(6): 877-887 CrossRef
  73. Parr D.R., Harris E.J. The effect of lead on the calcium-handling capacity of rat heart mitochondria. Biochemistry, 1976, 158: 289-294.
  74. Simons T.J.B. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology, 1993, 14(2-3): 77-85.
  75. Bragadin M., Marton D., Manente S. Trialkyllead compounds induce the opening of the MTP pore in rat liver mitochondria. J. Inorg. Biochem., 2007, 101(5): 876-878 CrossRef
  76. Skulachev V.P. Biokhimiya, 1996, 61(11): 2060-2063 (in Russ.).
  77. Rana S.V.S. Metals and apoptosis: recent developments. J. Trace Elem. Med. Bio., 2008, 22(4): 262-284 CrossRef

back