doi: 10.15389/agrobiology.2018.6.1285eng

UDC 579.64:631.461.52

Acknowledgements:
The authors are grateful to P.A. Belimova for valuable assistance in pot trials.

Supported financially by Russian Ministry of Science and Education (project RFMEFI60417X0168, Agreement No. 14.604.21.0168). Long-term storage of strains is supported by the Program for the development and inventory of bioresource collections

 

ISOLATION AND IDENTIFICATION OF ROOT NODULE BACTERIA FROM GUAR Cyamopsis tetragonoloba (L.) Taub.

I.G. Kuznetsova1, A.L. Sazanova1, V.I. Safronova1, J.P. Popova1,
D.V. Sokolova2, N.Yu. Tikhomirova1, Yu.S. Osledkin1, D.S. Karlov1,
À.À. Belimov1,2

1All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail kuznetsova_rina@mail.ru, v.safronova@rambler.ru (✉ corresponding author), anna_sazanova@mail.ru, elestd@yandex.ru, arriam2008@yandex.ru, makondo07@gmail.com, belimov@rambler.ru;
2Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail dianasokol@bk.ru

ORCID:
Kuznetsova I.G. orcid.org/0000-0003-0260-7677
Tikhomirova N.Yu. orcid.org/0000-0002-8510-2123
Sazanova À.L. orcid.org/0000-0003-0379-6975
Osledkin Yu.S. orcid.org/0000-0001-8865-7434
Safronova V.I. orcid.org/0000-0003-4510-1772
Karlov D.S. orcid.org/0000-0002-9030-8820
Popova J.P. orcid.org/0000-0003-1570-613X
Belimov À.À. orcid.org/0000-0002-9936-8678
Sokolova D.V. orcid.org/0000-0002-9967-7454
The authors declare no conflict of interests

Received July 24, 2018

 

Cyamopsis tetragonoloba (guar) belongs to the family Fabaceae and is one of the promising crops for cultivation in Russia. Beans contain a large number of protein and fatty oil content, green beans can serve as a valuable source of food and feeds (as seed flour and not ground granulated feeds), but the plant is more in demand as a source of guar gum, which is a polysaccharide formed by galactose and mannose (galactomannan) and is contained in the endosperm of the seeds of this plant. Guar gum is widely used in various industries: food, textile, cosmetic, oil and other.  Guar comes from India, where approximately 80 % of the world’s production of guar gum is obtained. However, due to high demand, the plant is cultivated throughout the world in areas with a suitable climate (the USA, Sudan, Kenya, Pakistan, Australia), including in the south of the Russian Federation. It is known that the productivity of leguminous crops depends not only on climatic conditions, but also on the effectiveness of symbiosis of plants with nodule bacteria (rhizobia), which is determined by the nitrogen-fixing activity and competitiveness of strains, as well as their complementarity to a particular variety. The use of rhizobia for inoculation of plants is especially important when they are introduced to new habitats, so knowledge of its microsymbionts is necessary for successful cultivation of guar in Russia. This paper is the first to report on isolation of the nodule bacteria of the species Bradyrhizobium elkanii from root nodules of the guar plants grown in a pot experiment with the use of soil samples from India. We determined the taxonomic position and genetic heterogeneity of the isolated strains. The 16S rRNA gene (rrs), ITS-region between the 16S and 23S rDNA and three “housekeeping” genes atpD, dnaK and recA of 10 isolates of nodule bacteria were sequenced. According to the results of the rrs sequence analysis, all isolates are assigned to the species Bradyrhizobium elkanii (family Bradyrhizobiaceae), whose representatives are microsymbionts of a wide range of leguminous plants, including the tribe Indigofereae, to which the guar belongs. However, the representatives of the species were not previously described as a microsymbiont of Ñyamopsis tetragonoloba. Sequencing of the ITS-region and the “housekeeping” genes confirmed the species identity of the isolates and demonstrated their genetic heterogeneity. Thus, the study of nodule bacteria from guar has expanded our knowledge of the phylogeny of its microsymbionts and will allow us in the future to select the most effective strains that improve nitrogen nutrition and plant growth. Knowledge of the rhizobial microsymbionts of guar will help maximize the symbiotic potential of this agronomically valuable culture for its stable and highly productive cultivation.

Keywords: Cyamopsis tetragonoloba, guar, root nodule bacteria, 16S rRNA gene, ITS region, "housekeeping" genes, symbiosis.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Lebed' D.V., Kostenkova E.V., Voloshin M.I. Tavricheskii vestnik agrarnoi nauki, 2017, 1(9): 53-63 (in Russ.)
  2. Dzyubenko N.I., Dzyubenko E.A., Potokina E.K., Bulyntsev S.V. Clusterbeans Cyamopsis tetragonolîba (L.) Taub. — properties, use, plant genetic resources and expected introduction in Russia (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2017, 52(6): 1116-1128 CrossRef
  3. Bulyntsev S.V., Val'yanikova T.I., Silaeva O.I., Kopot' E.I., Pimonov K.I. Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii «Innovatsii v tekhnologiyakh vozdelyvaniya sel'skokhozyaistvennykh kul'tur» [Proc. Conf. “Innovative technologies of crop cultivation”]. Donskoi GAU, pos. Persianovskii, 2017: 167-172 (in Russ.)
  4. Startsev V.I., Livanskaya G.A., Kulikov M.A. Vestnik Rossiiskogo gosudarstvennogo agrarnogo zaochnogo universiteta, 2017, 24(29): 11-15 (in Russ.)
  5. Vavilov N.I. Introduktsiya rastenii v sovetskoe vremya i ee rezul'taty. Izbrannye trudy. Tom V [The introduction of plants in the Soviet era: the results. Selected Works. Vol. V]. Moscow-Leningrad, 1965: 674-689 (in Russ.)
  6. Voloshin M.I., Lebed' D.V., Brusentsov A.S. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta,2016, 1(58): 84-91 (in Russ.)
  7. Stambul'skaya U.Ya. Vliyanie bakterii Rhizobium leguminosarum bv. viciae na morfometricheskie pokazateli rosta gorokha [The morphometric effects of Rhizobium leguminosarum bv. viciae on pea growth]. Available http://bio-x.ru/articles/simbioz-bakteriy-rhizobium-leguminosarum-i-rasteniy-goroha. No date (in Russ.).
  8. Zhakeeva M.B., Bekenova U.S., Zhumadilova Zh.Sh., Shorabaev E.Zh., Abdieva K.M., Sadanov A.K. Sovremennye problemy nauki i obrazovaniya, 2015, 5. Available http://www.science-education.ru/ru/article/view?id=21887. No date (in Russ.)
  9. Elsheikh El.A.Al., Ibrahim K. The effect of Bradyrhizobium inoculation on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chem., 1999, 65(2): 183-187 CrossRef
  10. Novikova N., Safronova V. Transconjugants of Agrobacterium radiobacter harboring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiol. Lett., 1992, 93(3): 261-268 CrossRef
  11. Safronova V.I., Kuznetsova I.G., Sazanova A.L., Kimeklis A.K., Belimov A.A., Andronov E.E., Pinaev A.G., Chizhevskaya E.P., Pukhaev A.R., Popov K.P., Willems A., Tikhonovich I.A. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek, 2015, 107(4): 911-920 CrossRef
  12. Safronova V.I., Tikhonovich I.A. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. In: Microbes in applied research: current advances and challenges /A. Mendez-Vilas (ed.). World Scientific Publishing Co, Hackensack, 2012.
  13. Elektronnaya baza dannykh Vedomstvennoi kollektsii poleznykh mikroorganizmov sel'skokhozyaistvennogo naznacheniya (VKSM) [Electronic Database of the Collection of useful microorganisms for agricultural purposes (VKSM)]. Available http://www.arriam.spb.ru. No date (in Russ.).
  14. Gaunt M.W., Turner S.L., Rigottier-Gois L., Lloyd-Macgilp S.A., Young J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Micr., 2001, 51(6): 2037-2048 CrossRef
  15. Stepkowski T., Czaplinska M., Miedzinska K., Moulin L. The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst. Appl. Microbiol., 2003, 26(4): 483-494 CrossRef
  16. Stepkowski T., Zak M., Moulin L., Króliczak J., Golinska B., Narozna D., Safronova V.I., Madrzak C.J. Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Syst. Appl. Microbiol., 2011, 34(5): 368-375 CrossRef
  17. GenBank sequence database. The National Center for Biotechnology Information. Available https://blast.ncbi.nlm.nih.gov/Blast.cgi. No date.
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parismony methods. Mol. Biol. Evol., 2011, 28(10): 2731-2739 CrossRef
  19. Safronova V.I., Sazanova A.L., Kuznetsova I.G., Belimov A.A., Andronov E.E., Chirak E.R., Popova J.P., Verkhozina A.V., Willems A., Tikhonovich I.A. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. Int. J. Syst. Evol. Micr., 2018, 68(5): 1644-1651 CrossRef
  20. Kuykendall L.D., Saxena B., Devine T.E., Udell S.E. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol., 1992, 38(6): 501-505 CrossRef
  21. Jordan D.C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium sp. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol., 1982, 32(1): 136-139 CrossRef
  22. Stepkowskii T., Banasiewicz J., Granada C.E., Andrews M., Passaglia L.M.P. Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the Tribe Genisteae. Genes, 2018, 9(3): 163 CrossRef
  23. Zhang Y.F., Chang E.T., Tian C.F., Wang F.Q., Han L.L., Chen W.F., Chen W.X. Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiate in the subtropical region of China. FEMS Microbiol. Lett., 2008, 285(2): 146-154 CrossRef
  24. Lu J., Yang F., Wang S., Ma H., Liang J., Chen Y. Co-existence of Rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium-like and Burkholderia pyrrocinia-like strains. Front. Microbiol., 2017, 21(8): 2255 CrossRef
  25. Toniutti M.A., Fornasero L.V., Albicoro F.J., Martini M.C., Draghi W, Alvarez F., Lagares A., Pensiero J.F., Del Papa M.F. Nitrogen-fixing rhizobial strains isolated from Desmodium incanum DC in Argentina: phylogeny, biodiversity and symbiotic ability. Syst. Appl. Microbiol., 2017, 40(5): 297-307 CrossRef
  26. Hassen A.I., Bopape F.L., Trytsman M. Nodulation study and characterization of rhizobial microsymbionts of forage and pasture legumes in South Africa. World Journal of Agricultural Research, 2014, 2(3): 93-100 CrossRef
  27. Mohamed Ahmed T.H., Elsheikne A.E., Mahdi A.A. The in vitro compatibility of some Rhizobium and Bradyrhizobium strains with fungicides. African Crop Science Conference Proceedings. Egypt, 2007, 18: 1171-1178 CrossRef
  28. Sharma G., Sharma S., Kumar A., Al-Muhtaseb A.H., Naushad M., Ghfar A.A., Mola G.T., Stadler F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydrate Polym., 2018, 199: 534-545 CrossRef
  29. Muthuselvi R., Shanthi A., Praneetha S. Mean performance of cluster bean (Cyamopsis tetragonoloba) genotypes for yield and quality parameters. International Journal of Chemical Studies, 2018, 6(2): 3626-3629.

back