doi: 10.15389/agrobiology.2018.6.1162eng

UDC 636.52/.58:636.082.2

Acknowledgements:
Supported financially by FANO (the Ministry of Science and Higher Education) of Russia (subprogram of Federal Program for the Development of Agriculture 2017-2025). Additional State Task № 007-00507-18-02 of 10.23.2018

 

SELECTION OF PREPARENTAL LINES OF PLYMOUTH ROCK CHICKEN USING MARKER GENES K AND k

D.N. Efimov1, Zh.V. Emanuylova1, E.V. Zhuravleva2, A.V. Egorova3,
V.I. Fisinin3

1Smena Breeding and Genetic Center, pos. Bereznyaki, Moscow Province, 141357 Russia, e-mail zhanna.em-anujlov@mail.ru  (✉ corresponding author), dmi40172575@yandex.ru;
2Ministry of Science and Education of the Russian Federation, 11, ul. Tverskaya, Moscow, 125009 Russia, e-mail zhuravla@yandex.ru;
3Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail vnitip@vnitip.ru, egorova@vnitip.ru

ORCID:
Efimov D.N. orcid.org/0000-0002-4152-2476
Egorova A.V. orcid.org/0000-0001-9981-5768
Emanuylova Zh.V. orcid.org/0000-0002-8855-2947
Fisinin V.I. orcid.org/0000-0003-0081-6336
Zhuravleva E.V. orcid.org/0000-0002-3253-0730
The authors declare no conflict of interests

Received July 16, 2018

 

Chicken lines with marker genes of sex-linked economically important traits are of a particular breeding interest. Here we report on the first results on the creation of an autosex maternal parental form of dual purpose Plymouth Rock breed by sequential selection of chickens from experimental Russian breeding lines. The paternal and maternal pre-parental Plymouth Rock lines were selected for productivity indices and for growth rate of wing feathers. Genotypes with slow (line X4) and fast (line X3) feathering rates were maintained via phenotypic evaluation at 1 day of age and culling individuals with fast and slow feathering rate, respectively; heterozygous males and their progeny were also culled. Chicks with slow feathering rate feature poor development of tectrix and remex, the tectrix being longer or equal to the remex; chicks with fast feathering rate feature the well-developed tectrix which is shorter than the remex. The quantitative PCR technique (real-time polymerase chain reaction) was also used to identify individuals with homo- and heterozygous sex-linked K and k alleles; the analyses were performed using feather pulp samples. Live bodyweight at 5 weeks of age increases significantly (p ≤ 0.001) in the selected individuals of generation F5 compared to F1, i.e in X3, the index is 13.6 % higher in males and 15.4 % higher in females; and in X4, it is 15.2 and 14.2 % higher (р ≤ 0.001), respectively. Breast muscle score is improved by 7.3 and 5.0 % in males and by 6.2 and 5.0 % (р ≤ 0.001) in females of X3 and X4 lines, respectively; leg muscle scores is 7.5 and 5.3 % higher in males and 10.5 and 2.5 % higher (р ≤ 0.001) in females. The progress in the reproductive performance also occurs: egg production during 52 weeks of age was improved by 4.1 eggs per hen (3.39 %) in X3 line and by 4.7 eggs (3.7 %, p ≤ 0.001) in X4 line; percentage of eggs suitable for incubation was 0.6 and 1.0 % higher, and hatch was 0.5 and 2.2 % higher in X3 and X4 lines, respectively. These results in better chick output per hen (by 3.9 and 7.0 % in X3 and X4 lines). Thus the selection improved the most of the productivity indices in every successive generation; the resulting paternal (X3) and maternal (X4) lines differed from the initial purebred chicken in the productive performance and carried marker genes of slow (X4) and fast (X3) feathering rate. Their crossing brings to a maternal form which is autosex for K and k genes with sexing accuracy 99.6 %.

Keywords: Plymouth Rock breed, breeding, chicken lines, feathering type, genotype, marker genes, feathering genes, K and k alleles, sexing, productivity.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Chomaev A.M., Mityashova O.S., Tsygankov V.I. Zootekhniya, 2012, 8: 2-3 (in Russ.).  
  2. Bramwell P.K. Sexing chicks in the backyard flock. The Poultry Site. Available  http://www.thepoultrysite.com/articles/95/sexing-chicks-in-the-backyard-flock/. Accessed December 02, 2018.
  3. Cheng Y.H., Kuo T.E., Lee D.N., Weng C.F. Sex identification of the Black-faced Spoonbill (Platalea minor). Zoological Studies, 2006, 45: 104-113.
  4. Clinton M. A rapid protocol for sexing chick embryos (Gallus g. domesticus). Animal Genetics, 1994, 25(5): 361-362 CrossRef
  5. Dawson D.A., Darby S., Hunter F.M., Krupa A.P., Jones I.L., Burke T. A critique of avian CHD-based molecular sexing protocols illustrated by a Z-chromosome polymorphism detected in auklets. Molecular Ecology Notes, 2001, 1(3): 201-204 CrossRef
  6. Ellegren H. Hens, cocks and avian sex identification. A quest for genes on Z or W? EMBO Reports, 2001, 2(3): 192-196 CrossRef
  7. Cerit H., Avanus K. Sex identification by CHDW and HDZ genes of avian sex chromosomes in Nymphicus hollandicus. Turk. J. Vet. Anim. Sci., 2007, 31(6): 371-374.
  8. Griffiths R.A., Korn R.M. A CHDI gene is Z chromosome linked in chicken Gallusdomesticus. Gene, 1997, 197(1-2): 225-229 CrossRef
  9. Canon N.R., Canon N.R., Tell L.A., Needham M.L. Flow cytometric analysis of nuclear DNA for sex identification in three psittacine species. Am. J. Vet. Res., 2000, 61(7): 847-850.
  10. Cerit H., Avanus K. Sex identification in avian species using DNA typing methods. World’s Poultry Science Journal, 2007, 63(1): 91-99 CrossRef
  11. Bondarenko V.Yu. Materialy dokladov Konferentsii Rossiiskogo natsional'nogo otdeleniya WPSA [Proc. Conf. of the Russian National Branch of WPSA]. Zelenograd, 2003: 46 (in Russ.).  
  12. Ustinova E.S., Gofman A.Yu. Materialy IV Mezhdunarodnoi konferentsii «Ptitsevodstvo — mirovoi i promyshlennyi opyt» [Proc. IV Int. Conf. “Poultry farming — global experience”]. Moscow, 2007: 274-276 (in Russ.).  
  13. Lessells S., Mateman C. Sexing birds using random amplified polymorphic DNA (RAPD) markers. Molecular Ecology, 2002, 7(2): 187-195 CrossRef
  14. Elferink M.G., Vallee A.A.A., Jungerius A.P., Crooijmans R.P.M.A., Groenen M.A.M. Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken. BMC Genomics, 2008, 9: 391 CrossRef
  15. Zhao J., Yao J., Li F., Yang Z., Sun Z., Qu L., Wang K., Su Y., Zhang A., Montgomery S.A., Geng T., Cui H. Identification of candidate genes for chicken early- and late- feathering. Poultry Sci., 2016, 95(7): 1498-1503 CrossRef
  16. Burt D.W. Chicken genome: current status and future opportunities. Genome Res., 2005, 15(12): 1692-1698 CrossRef
  17. Derks M.F.L., Herrero-Medrano J.M., Crooijmans R.P.M.A., Vereijken  A., Long J.A., Megens H.-J., Groenen M.A.M. Early and late feathering in turkey and chicken: same gene but different mutations. Genet. Sel. Evol., 2018; 50: 7 CrossRef
  18. Simonsen M. The MHC the chicken genomic structure, gene products and resistance to oncogenic DNA and RNA viruses. Veterinary Immunology and Immunopathology, 1987, 17(1-4): 243- 253 CrossRef
  19. Bu G., Huang G., Fu H., Li J., Huang S., Wang Y. Characterization of the novel duplicated PRLR gene at the late-feathering K locus in Lohmann chickens. J. Mol. Endocrinol., 2013, 51: 261-276 CrossRef
  20. Egorova A.V., Shakhnova L.V. Ptitsa i ptitseproduky, 2013, 3: 41-43 (in Russ.).
  21. Emanuilova Zh.V. Ptitsevodstvo, 2008, 8: 25-26 (in Russ.).  
  22. Petrukovich T. Zhivotnovodstvo Rossii, 2017, 12: 11-12 (in Russ.).  
  23. Roiter Ya.S., Egorova A.V., Konopleva A.P., Tyapugin E.E., Shashina G.V., Degtyareva T.N., Karpenko L.S., Tyurikov V.M., Petrukhin O.N., Shcherbakova N.G. Selektsionno-plemennaya rabota v ptitsevodstve /Pod redaktsiei V.I. Fisinina, Ya.S. Roitera [Selection and breeding in poultry farming. V.I. Fisinin, Ya.S. Roiter (eds.)]. Sergiev Posad, 2016 (in Russ.).  
  24. Alekseev Ya.I., Borodin A.M., Nikulin A.V., Emanuilova Zh.V., Efimov D.N., Fisinin V.I. Molecular genotyping of chicken (Gallus gallus L.) feathering genes in connection with separation by sex. Agricultural Biology, 2017, 52(2): 367-373 CrossRef
  25. Korshunova L., Royter Y., Egorova A. The usage of gene modifiers in selection of new forms of color- and feather-sex poultry. Proc. XlV European Poultry Conference, 27 June 2014, Stavanger, Norway 23-27 June 2014. Stavanger, 2014: 512.
  26. Roiter Y., Egorova A., Sevastianova A., Korshunova L. The selection of autosex interlinear forms of poultry (chicken, geese, Guinea fowl). Proc. XXV World’s Poultry Congress, September 5-9, 2016, China. Beijing, 2016: 257.
  27. Lowe P.C., Merkley J.W. Association of genotypes for rate of feathering in broilers with production and carcass composition traits: effect of genotypes, sex, and diet on growth and feed conversion. Poultry Sci., 1986, 65(10): 1853-1858 CrossRef
  28. Dymkov A., Davydov D., Mal'tsev A., Spiridonov I., Chashchina G. Ptitsevodstvo, 2004, 10: 3-4 (in Russ.).  

back