doi: 10.15389/agrobiology.2018.6.1294eng

UDC 633.366:631.524.85:581.1

Acknowledgements:
The work was performed according to the State Assignment (VIR topic No. 0662-2018-0016)

 

SCREENING OF SWEET CLOVER (Melilotus Adans.) SPECIES DIVER-SITY FOR RESISTANCE TO CHLORIDE SALINIZATION

N.I. Dzyubenko, O.V. Duk, L.L. Malyshev, Yu.A. Prosvirin, I.A. Kosareva

Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail irkos2004@yandex.ru (✉ corresponding author)

ORCID:
Dzyubenko N.I. orcid.org/0000-0003-0250-5814
Prosvirin Yu.A. orcid.org/0000-0001-8018-8240
Duk O.V. orcid.org/0000-0001-9441-5802
Kosareva I.A. orcid.org/0000-0003-2522-5575
Malyshev L.L. orcid.org/0000-0002-8595-1336
The authors declare no conflict of interests

Received October 15, 2017

 

Saline soils are widespread in the world, including in CIS countries. Species of sweet clover (genus Melilotus Adans.) which are valuable fodder plants, e.g. at insufficient moisture on chestnut saline soils, are also among the best phytomeliorants in the legume family. However, during early stages of growing the sweet clover has poor salinity tolerance. Here, we modified earlier developed test and screened accessions of the VIR World Collection (Vavilov All-Russian Institute of Plant Genetic Resources) for resistance to chloride salinity, and for the first time identified among them the forms with high salinity resistance. In the research we used a laboratory method of assessing salt tolerance. Samples of white and yellow sweet clover were grown under controlled conditions, in water culture, according to the following scheme: control (without salinity); salinity of 3 atm. NaCl; the salinity of 5 atm. NaCl. The length of root and sprout of seedlings were measured after 5-day exposure to the stressor. For each sample we calculated the indices of the root length and the sprout length as the ratio of the relevant medium parameters of plants in the test to that in the control. The higher the index value, the more salt-tolerant the sample is. In our tests, chloride salinity caused growth inhibition of roots and shoots samples of both species. The degree of negative growth response intensifies with an increase in NaCl concentration. It was shown that salt stressor intensifies intra- and interpopulation variability of sweet clover growth indicators. It is established that the root length index is more informative diagnostic criterion for laboratory screening for salt tolerance among sweet clover plants. The studied fragment of the collection includes 36.2 % of resistant samples of white sweet clover and 29.6 % of yellow sweet clover, i.e. the adaptive capacity towards excess of sodium chloride in the root zone of the studied species is approximately the same. Salt-resistant varieties of white clover come from Far East (Ryadovoi and Diomid), Kazakhstan (Shedevr 75), Novosibirsk (Lucernovidnyi D-20) and Ivanovo (wild sample k-15650) regions; of yellow sweet clover — from Western Siberia (Omskii 8, Omskii 916, Novosibirskii 1, Severotatarskii, Khorog 2155). Selected salt tolerant forms can serve as initial parental forms for creation of yellow and white sweet clover varieties resistant to chloride salinity during early stages of plant development. This will allow better use of the potential of these species for forage, and for bioremediation goals. According to the obtained data, salt-tolerant sweet clover samples often originate from a region with widespread saline soils that should be considered to determine the strategy of search for forms with edaphic resistance valuable for breeding. Many of the selected salt-tolerant varieties are also characterized by other important breeding traits: high productivity, intensive regrowth after cutting, precocity, biotic and abiotic resistance to viruses, drought, low temperatures, unfavorable overwintering, valuable biochemical properties such as high protein content and low coumarin level.

Keywords: chloride salinity, Melilotus, sweet clover, salt tolerance, growth indicators, variability, root length index.

 

Full article (Rus)

Supplementary

Full article (Eng)

Supplementary

 

REFERENCES

  1. Cocks P.S. Ecology of herbaceous perennial legumes: a review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Aust. J. Agr. Res., 2001, 52(2): 137-151 CrossRef
  2. Maddaloni J. Forage production on saline and alkaline soils in the humid region of Argentina. Reclam. Reveg. Res., 1986, 56: 11-16.
  3. Lopatovskaya O.G., Sugachenko A.A. Melioratsiya pochv. Irkutsk, 2010 (in Russ.).  
  4. Evans P.M., Kearney G.A. Melilotus albus Medick. is productive and regenerates well on saline soils neutral to alkaline reaction in the high rainfall zone of south-western Victoria. Aust. J. Exp. Agric., 2003, 43: 349-355.
  5. Smith W.K., Gorz H.J. Sweet clover improvement. Adv. Agron., 1965, 17: 63-231.
  6. Stevenson G.A. An agronomic and taxonomic review of the genus Melilotus Mill. Can. J. Plant Sci., 1969, 49: 1-20.
  7. Talovina G.V. Rod Melilotus L. vo flore Rossii i sopredel'nykh stran (sistematika, geografiya, ekologiya, strategiya sokhraneniya). Avtoreferat kandidatskoi dissertatsii [The genus Melilotus L. in the flora of Russia and neighboring countries (taxonomy, geography, ecology, conservation strategy). PhD Thesis]. St. Petersburg, 2011 (in Russ.)
  8. Suvorov V.V. Donnik — Melilotus. Kul'turnaya flora SSSR [Sweet clover Melilotus. Cultivated plants of the USSR. Vol. 13, Iss. 1]. Moscow-Leningrad, 1950, tom 13, vypusk 1: 345-502 2011 (in Russ.)
  9. Al Sherif E.A. Melilotus indicus (L.), a salt tolerant wild leguminous herb with high potential for use as forage crop in salt-affected soils. Flora — Morphology, Distribution, Functional Ecology of Plants, 2009, 204(10): 737-746 CrossRef
  10. Dzyubenko N.I. Genetic resources of rangeland plants of Central Asia. Proc. IX International Rangeland Congress. Rosario, Argentina, 2011: 491-495.
  11. Muntyan A.N., Belova V.S., Chizhevskaya E.P., Rumyantseva M.L., Simarov V.V., Andronov E.E. Molecular analysis of the genetic diversity of populations of sweet clover (Melilotus dentatus Pers.). Agricultural Biology, 2012, 6: 92-99 CrossRef
  12. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases, Pests and Weeds /A.N. Afonin, S.L. Greene, N.I. Dzyubenko, A.N. Frolov (eds.). 2008. Available: http://www.agroatlas.ru. No date.
  13. De Dios Guerrero-Rodríguez J., Revell D.K., Bellotti W.D. Mineral composition of lucerne (Medicago sativa) and white melilot (Melilotus albus) is affected by NaCl salinity of the irrigation water. Anim. Feed Sci. Tech., 2011, 170(1-2): 97-104 CrossRef
  14. Zhumadilova Zh.Sh., Mukhambetov B., Abdieva K.M., Shorabaev E.Zh., Sadanov A.K. Uspekhi sovremennogo estestvoznaniya, 2014, 5: 546-549 (in Russ.).  
  15. Luo K., Jahufer M.Z.Z., Wu F., Di H., Zhang D., Meng X., Zhang J., Wang Y. Genotypic variation in a breeding population of yellow sweet clover (Melilotus officinalis). Front. Plant Sci., 2016, 7: 972 CrossRef
  16. Ibragimova M.V., Rumyantseva M.L., Onishchuk O.P., Belova V.S., Kurchak O.N., Andronov E.E., Dzyubenko N.I., Simarov B.V. Mikrobiologiya, 2006, 75(1): 94-100 (in Russ.).  
  17. Tyslenko A.M., Tuzhilin V.M., Novikov M.N. V sbornike: Agroekologicheskie funktsii organicheskikh veshchestv pochvy i ispol'zovanie organicheskikh udobrenii i bioresursov v landshaftnom zemledelii [Agroecological functions of soil organic matter and the use of organic fertilizers and bioresources in landscape agriculture]. Vladimir, 2004: 407-410 (in Russ.).  
  18. Mushinskii A.A.. Izvestiya Orenburgskogo agrarnogo universiteta, 2004, 4: 29-31 (in Russ.).  
  19. Blokhina L.P. Donnik belyi — perspektivnaya agrotsenoticheskaya kul'tura [White clover is a promising agrocenotic culture]. Penza, 2003 (in Russ.).  
  20. Kolomeichenko V.V., Durnev G.I. Materialy Mezhdunarodnoi konferentsii «Ekologicheskie osnovy povysheniya produktivnosti i ustoichivosti aerolandshaftnykh sistem» [Proc. Int. Conf. “Ecological foundations of increasing productivity and sustainability of aerial landscape systems”]. Orel, 2001: 222-237 (in Russ.).  
  21. Dzhambulatov M.M., Gasanov G.N., Musaev M.R., Sapullaev A.M., Mansurov N.M. Agrarnaya nauka, 2008, 3: 27-30 (in Russ.).  
  22. Mukhambetov B. Materialy Mezhdunarodnoi konferentsii «Perspektivnye tekhnologii dlya sovremennogo sel'skokhozyaistvennogo proizvodstva» [Proc. Int. Conf. “Perspective technologies for modern agriculture”]. Volgograd, 2009: 133-144 (in Russ.).  
  23. Tseloval'nikov V.K., Chukhlebova N.S. Donnik — tsennaya kormovaya i sideral'naya kul'tura dlya tyazhelo-suglinistykh solontsovykh pochv Stavropol'ya [The clover is a valuable fodder and green manure crop for heavy loamy sodic soils of Stavropol]. Moscow, 2007 (in Russ.).  
  24. Timofeeva M.K., Maksimova Kh.N., Nikolaeva V.S. V sbornike: Problemy sokhraneniya rastitel'nogo pokrova Vnutrennei Azii [Conservation of vegetation cover in Inner Asia]. Ulan-Ude, 2004, tom 2: 107-108 (in Russ.).  
  25. Negrão S., Schmöckel S.M., Tester M. Evaluating physiological responses of plants to salinity stress. Ann. Bot., 2017, 119(1): 1-11 CrossRef
  26. Ivanov A.I., Chetvertnykh L.M. Vestnik sel'skokhozyaistvennoi nauki, 1980, 5: 117-122 (in Russ.).  
  27. Kosareva I.A., Davydova G.V., Dzyubenko N.I., Duk O.V. Materialy Mezhdunarodnoi konferentsii «Geneticheskie resursy kul'turnykh rastenii. Problemy mobilizatsii, inventarizatsii, sokhraneniya i izucheniya genofonda vazhneishikh sel'skokhozyaistvennykh kul'tur dlya resheniya prioritetnykh zadach selektsii» [Proc. Int. Conf. “Genetic resources of cultivated plants: mobilization, inventory, preservation and study of the gene pool of the most important for topical aspects of plant breeding]. St. Petersburg, 2001: 314 (in Russ.).  
  28. Kosareva I.A., Duk O.V., Malyshev L.L., Davydova G.V., Yakovleva M.Yu. Katalog mirovoi kollektsii VIR. Vypusk 794. Donnik. Laboratornaya otsenka obraztsov na ustoichivost' k alyumotoksichnosti [VIR World Collection Catalog. Iss. 794. Sweet clover. Laboratory evaluation of samples for tolerance to aluminium toxicity]. St. Petersburg, 2009 (in Russ.).  
  29. Scasta J.D., Trostle C.L., Foster M.A. Evaluating alfalfa (Medicago sativa L.) cultivars for salt tolerance using laboratory, greenhouse and field methods. J. Agr. Sci., 2012, 4(6): 90-103 CrossRef
  30. Rumbaugh M.D., Pendery B.M. Germination salt resistance of alfalfa (Medicago sativa L.) germplasm in relation to subspecies and centers of diversity. Plant Soil, 1990, 124(1): 47-51 CrossRef
  31. Hefny M.M., Dolinksi R. Evaluation of different alfalfa (Medicago sativa L. sensu lato) varieties under different concentrations of NaCl during germination stage. North American Alfalfa Improvement Conference Proceedings. Bozeman, 1998. Available http://www.naaic.org/Publications/1998Proc/abstracts/Hefny.html. Accessed December 27, 2018.
  32. Jun Li M., Jing Hui Y., Mi Chao M., Bin Qiong H., Xiao Jie S. Study on salt tolerance of seven different Melilotus varieties. J. Northwest A F Univ. Nat. Sci.,2009, 37: 73-78.
  33. Zhu J. Plant salt tolerance. Trends Plant Sci., 2001, 6(2): 66-71.
  34. Esechie N.A., Rodriguez V., Al-Asmi H.S. Effect of sodium chloride salinity on cation equilibria in alfalfa (Medicago sativa). Crop Res., 2002, 23(2): 253-258.
  35. Petkova M., Tchorbadjeva M., Panchev I., Odjakova M. Protein profiles of adapted to NaCl embryogenic suspension cultures of orchard grass. Godishnik na Sofiiskiya universitet “Sv. Kliment Okhridski”, 2005, 96(4-1): 25-31. 
  36. Hasegawa P.M., Bressan R.A., Pardo J.M. The dawn of plant salt to tolerance genetics. Trends Plant Sci., 2000, 5(8): 317-319 CrossRef
  37. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Phys., 2000, 51: 463-499 CrossRef
  38. Merchan F., de Lorenzo L., González Rizzo S., Niebel A., Manyani H., Frugier F., Sousa C., Crespi M. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J., 2007, 51(1): 1-17 CrossRef
  39. Kosareva I.A., Vishnevskaya M.S. Izvestiya SPBGAU, 2015, 38: 72-76 (in Russ.).
  40. Munns R., James R.A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003, 253(1): 201-218 CrossRef
  41. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora — Morphology, Distribution, Functional Ecology of Plants, 2004, 199(5): 361-376 CrossRef
  42. De Lorenzo L., Merchan F., Laporte P., Thompson R., Clarke J., Sousa C., Crespi M. A novel plant leucine-rich repeat receptor kinasa regulates the response of Medicago truncatula roots to salt stress. The Plant Cell, 2009, 21(2): 668-680 CrossRef
  43. Sinel'nikova V.N. Metodicheskie ukazaniya dlya opredeleniya soleustoichivosti kormovykh kul'tur po prorastaniyu semyan v solevykh rastvorakh: Donnik [Guidelines for determining the salt tolerance of forage crops by seed germination in salt solutions: Melilot]. Leningrad, 1977 (in Russ.).  
  44. Ahmad M., Shahzad A., Iqbal M., Asif M., Hirani A.H. Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Australian Journal of Crop Science, 2013, 7(1): 66-74.
  45. Mugwira L.M., Edgawhary S.M., Patel S.U. Aluminium tolerance in triticale, wheat and rye as measured by root growth characteristics and aluminium concentration. Plant Soil, 1978, 50(1-3): 681-690 CrossRef
  46. Sammar Raza M.A., Saleem M.F., Khan I.H., Jamil M., Ijaz M., Khan M.A. Evaluating the drought stress tolerance efficiency of wheat (Triticum aestivum L.) cultivars. Russian Journal of Agricultural and Socio-Economic Sciences, 2012, 12(12): 12-18.
  47. Polevoi V.V., Chirkova T.V, Lutova L.A., Salamatova T.S., Barashkova E.A., Kozhushko N.L., Sinel'nikova V.N., Kosareva I.A. Praktikum po rostu i ustoichivosti  rastenii [Workshop on plant growth and resistance]. St. Petersburg, 2001 (in Russ.).  
  48. Rogers M.E, Colmer T.D., Frost K., Henry D., Cornwall D., Hulm E., Deretic J., Hughes S.R., Craig A.D. Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant Soil, 2008, 304(1-2): 89-101 CrossRef
  49. Zabala J.M., Marinoni L., Giavedoni J.A., Schrau G.E. Breeding strategies in Melilotus albus Desr., a salt-tolerant forage legume. Euphytica, 2018, 214: 22 CrossRef
  50. Zhang H., Wu F., Guo W., Bai R., Yan Z., Muvunyi B.P., Yan Q., Zhang Y., Yi X., Zhang J. Genetic variation and diversity in 199 Melilotus accessions based on a combination of 5 DNA sequences. PLoS ONE, 2018, 13(3): e0194172 CrossRef

back