doi: 10.15389/agrobiology.2017.6.1069eng

UDC 636.4:619:616.636:578:[577.2.08+51-76



A.D. Sereda, A.R. Imatdinov, O.A. Dubrovskaya, D.V. Kolbasov

Federal Research Center for Virology and Microbiology, Federal Agency of Scientific Organizations, 1, ul. Akademika Bakuleva, pos. Vol’ginskii, Petushinskii Region, Vladimir Province, 601125 Russia, e-mail

Sereda A.D.
Imatdinov A.R.
Kolbasov D.V.
Dubrovskaya O.A.

Received May 4, 2017


The agent of African swine fever (ASF) is a large envelope virus (ASFV) belonging to family Asfarviridae and containing a double-stranded linear DNA of 170 to 190 kb in size coding for more than 150 proteins, most of which are involved in host-virus interactions (L.K. Dixon et al., 2004). Its virulent isolates cause a contagious hemorrhagic disease with 100 % mortality both among domestic pigs (Sus scrofa domesticus) and wild boars (Sus scrofa). The disease control is complicated by the lack of any specific preventive methods (R.J. Rowlands et al., 2008; D.A. Chapman et al., 2011; P. Rahimi et al., 2010). The attempts to protect pigs against ASF with experimental live and inactivated subunit vaccines developed by standard methods failed (S. Blome et al., 2014). This paper discusses immunological mechanisms to provide the specific defense base on potentially protective virus-specific proteins, and immunogenic and some protective properties of ASFV gene-based DNA constructs. Immune protection at ASF is due to cytotoxic T-lymphocytes (CTL) and antibody-dependent cell-mediated cytotoxicity (ADCC) effectors against viral proteins located on infected monocyte/mac-rophage. There is a synergism of these effectors (A.D. Sereda, 2013). Based on i) the location, structure and functional properties of viral proteins, ii) the polypeptide specificity of blood antibodies after injecting pigs with ASFV attenuated or virulent strains, iii) the effects of pig immunization using purified proteins from infected cells or the recombinant proteins, and DNN constructs, p30, p54 and CD2v proteins are considered as potentially protective (S.D. Kollnberger et al., 2002; M.G. Barderas et al., 2001; J.G. Neilan et al., 2004). A significant disadvantage of the candidate DNA vaccine is a relatively low immune response, especially in large mammals. There were attempts of overcoming the problem using various strategies (J. Rajcani et al., 2005, M.A. Liu et al., 2006; L.H. van Drunen et al., 2004; J.A. Leifert et al., 2004). To target the lymphocytes expressing receptors CD48 and CD58 to the protein CD2 of the antigen presenting cells (APC), the secretory part (s) of ASFV protein HA (or CD2v) has been used (A. Brossay et al., 2003; K. Crosby et al., 2004). The addition of sHA gene to the DNA construct enhanced both humoral and cellular responses in pigs against fused recombinant proteins p30 and p54 (F. Ruiz-Gonzalvo et al., 1996). An increase in the humoral response due to targeting p30 and p54 fused to one chain of the antibody recognizing the invariant epitope of pig class II main histocompatibility complex (MHC) was demonstrated. However, the enhancement of the humoral immune response to p30 and p54 rather often resulted in earlier death of pigs infected with virulent strains. To stimulate the specific CD8+-T-cell responses, a pCMV-UbsHAPQ construct coding for antigenic determinants p30, p54 and sHA fused with cellular ubiquitin (Ub) was developed. The immunization using pCMV-UbsHAPQ did not induce an instrumentally determined antibody response though provided partially pig protection against ASFV challenge (J.M. Argilaguet et al., 2011). The potential of the DNA constructs was confirmed by pig immunization using ASFV DNA libraries (ASFVUblib) coding for viral genome short fragments combined with the cellular ubiquitin gene (A. Lacasta et al., 2014). In the 4029 clones, about 76 % of the viral genome (130 kb) were covered. As many as 60 % of ASFVUblib-immunized pigs survived after infection with an ASFV virulent strain. According to ELISA, none of the ASFVUblib-immunized pig had detectable specific antibodies to ASFV proteins prior to the challenge. The CD8+-T-cells comprised the only cell sub-population among the studied ones that showed a statistically significant growth in the survived pigs starting from day 5 post immunization. The opportunities for a vaccination strategy based on the use of BacMam viruses that are baculovirus vectors encoding viral antigens under the control of cell-active promoters of vertebrates have been analyzed (J.M. Argilaguet et al., 2013). Immunization with recombinant baculovirus (BacMam-sHAPQ) encoding two ASFV full-length immunodominant proteins p30 and p54 fused to a carboxyl terminus of the extracellular domain of a viral hemagglutinin sHA resulted in no viraemia or clinical signs of the disease in 66 % of the pigs. Moreover, BacMam-sHAPQ-immunized animal had no ELISA-detectable virus-specific antibody prior to challenge. Thus, the prospect for development of DNA vaccine against ASFV seems to be encouraging.

Keywords: DNA vaccines, African swine fever, protective proteins, antibody, cytotoxic T-lymphocytes.


Full article (Rus)

Full article (Eng)




  1. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., Liverani E., Nix R., Silk R., Zhang F. African swine fever virus proteins involved in evading host defence systems. Vet. Immunol. Immunopathol., 2004, 100: 117-134 CrossRef
  2. Gogin A., Gerasimov V., Malogolovkin A., Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Res., 2013, 173(1): 198-203 CrossRef
  3. Abrahantes J.C., Gogin A., Richardson J., Gervelmeyer A. Epidemiological analyses on African swine fever in the Baltic countries and Poland. EFSA Journal, 2017, 15(3): 4732 CrossRef
  4. Mebus C.A. African swine fever. Adv. Virus Res., 1988, 35: 251-269 CrossRef
  5. Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32: 3879-3882 CrossRef
  6. Kovalenko Ya.R., Sidorov M.A., Burba L.G. Afrikanskaya chuma svinei [African swine fever]. Moscow, 1972 (in Russ.).
  7. Petuska N. Quelques aspects morphogenesis des suites de la vaccination contre la PPA (virose L) an Portugal. Bull. Off. Int. Epiz., 1965, 63: 199-237.
  8. Vigário J.D., Terrinha A.M., Nunes J.F.M. Antigenic relatonships among strains of African swine fever virus. Arch. ges. Virusforschung, 1974; 45: 272-277 CrossRef
  9. Kolbasov D.V., Balyshev V.M., Sereda A.D. Itogi razrabotki zhivykh vaktsin protiv afrikanskoi chumy svinei. Veterinariya, 2014, 8: 3-8 (in Russ.).
  10. Boinas F.S., Hutchings G.H., Dixon L.K., Wilkinson P.J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol., 2004, 85: 2177-2187 CrossRef
  11. King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A.L., Netherton C.L., Moffat K. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29: 4593-4600 CrossRef
  12. Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 1994, 198(1): 350-354 CrossRef
  13. Viñuela E. African swine fever virus. Current Topics in Microbiology and Immunology, 1985, 116: 151-170 CrossRef
  14. Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Res., 2013, 173: 101-109 CrossRef
  15. Gomez-Puertas P., Rodriguez F., Oviedo J.M., Ramiro-Ibanez F., Ruiz-Go-nzalvo F., Alonso C., Escribano J.M. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J. Virol., 1996, 70: 5689-5694.
  16. Gomez-Puertas P., Rodriguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African Swine Fever Virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 1998, 243, 461-471 CrossRef
  17. Sereda A.D., Solovkin S.L., Fugina L.G., Makarov V.V. Voprosy virusologii, 1992, 3: 168-170 (in Russ.).
  18. Makarov V.V., Vishnyakov I.F., Kolomytsev A.A., Sereda A.D. Byulleten' eksperimental'noi biologii i meditsiny, 1995, 12: 599-602 (in Russ.).
  19. Norley S.G., Wardley R.C. Cytotoxic lymphocytes induced by African swine fever infection. Res. Vet. Sci., 1984, 37: 255-257.
  20. Makarov V., Nedosekov V., Sereda A., Matvienko N. Immunological conception of African swine fever. Zoology and Ecology, 2016, 26(3): 236-243 CrossRef
  21. Martins C.L.V., Lawman M.J.P., Scholl T., Mebus C.A., Lunney J.K. African swine fever virus specific porcine cytotoxic T cell activity. Arch. Virol., 1993, 129(1-4): 211-225 CrossRef
  22. Oura C.A.L., Denyer M.S., Takamatsu H., Parkhouse R.M.E. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol., 2005, 86: 2445-2450 CrossRef
  23. Sereda A.D., Kazakova A.S., Imatdinov A.R., Kolbasov D.V. Humoral and cell immune mechanisms under African swine fever (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2015, 50(6): 709-718. CrossRef (in Engl.).
  24. Sereda A.D. Simulation of protective immune mechanisms at African swine fever in vitro. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 4: 59-64 CrossRef
  25. Kollnberger S.D., Gutierrez-Castañeda B., Foster-Cuevas M., Corteyn A., Parkhouses R.M.E. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. J. Gen. Virol., 2002, 83: 1331-1342 CrossRef
  26. Barderas M.G., Rodriguez F., Gomez-Puertas P., Aviles M., Beitia F., Alonso C., Escribano J. M. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Arch. Virol., 2001, 146: 1681-1691 CrossRef
  27. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 2004, 319: 337-342.
  28. Salas M.L., Andrés G. African swine fever virus morphogenesis. Virus Res., 2013, 173(1): 29-41 CrossRef
  29. Pastor M.J., Laviada M.D., Sanchez-Vizcaino J.M., Escribano J.M. Detection of African swine fever virus antibodies by immunoblotting assay. Can. J. Vet. Res., 1989, 53(1): 105-107.
  30. Gallardo C., Blanco E., Rodríguez J.M., Carrascosa A.L., Sanchez-Vizcaino J.M. Antigenic properties and diagnostic potential of African swine fever virus protein pp62 expressed in insect cells. J. Clin. Microbiol., 2006, 44: 950-956 CrossRef
  31. Andrés G., Simón-Mateo C., Viñuela E. Assembly of African swine fever virus: role of polyprotein pp220. J. Virol., 1997, 71: 2331-2341.
  32. Reis A.L., Parkhouse R.M., Penedos A.R., Martins C., Leitão A. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. J. Gen. Virol., 2007, 88: 2426-2434 CrossRef
  33. Kazakova A.S., Imatdinov I.R., Dubrovskaya O.A., Imatdinov A.R., Sidlik M.V., Balyshev V.M., Krasochko P.A., Sereda A.D. Recombinant protein p30 for serological diagnosis of African Swine Fever by immunoblotting assay. Transbound. Emerg. Dis., 2017, 64(5): 1479-1492 CrossRef
  34. Giménez-Lirola L.G., Mur L., Rivera B., Mogler M., Sun Y., Lizano S., Goodell C., Harris D.L.H., Rowland R.R.R., Gallardo C., Sánchez-Vizcaíno J.M., Zimmerman J. Detection of African Swine Fever Virus antibodies in serum and oral fluid specimens using a recombinant protein 30 (p30) dual matrix indirect ELISA. PLoS ONE, 2016, 11(9): 1-14 CrossRef
  35. Sereda A.D., Anokhina E.G., Makarov V.V. Voprosy virusologii, 1994, 39(6): 278-281 (in Russ.).
  36. Sereda A.D. Aktual'nye voprosy veterinarnoi biologii, 2013, 4(20): 31-35 (in Russ.).
  37. Borca M.V., Kutish G.F., Afonso C.L., Irusta P., Carrillo C., Brun A., Sussman M., Rock D.L. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology, 1994, 199: 463-468 CrossRef
  38. Malogolovkin A., Burmakina G., Tulman E.R., Delhon G., Diel D.G., Salnikov N., Kutish G.F., Kolbasov D., Rock D.L. African swine fever virus CD2v and C-type lectin gene loci mediate serologic specificity. J. Gen. Virol., 2015, 96(4): 866-873 CrossRef
  39. Argilaguet J.M., Pérez-Martín E., López S., Goethe M., Escribano J.M., Giesow K., Keil G.M., Rodríguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res., 2013, 98(1): 61-65 CrossRef
  40. Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P.A., Rodríguez F. DNA vaccination partially protects against African Swine Fever Virus lethal challenge in the absence of antibodies. PLoS ONE, 2012, 7(9): 1-11 CrossRef
  41. Jiao S., Williams P., Berg R.K., Hodgeman B.A., Liu L., Repetto G., Wolff J.A. Direct gene transfer into nonhuman primate myofibers in vivo. Hum. Gene Ther., 1992, 3: 21-33 CrossRef
  42. Kutzler M.A., Weiner D.B. DNA vaccines: ready for prime time? Nat. Rev. Genet., 2008, 9: 776-788 CrossRef
  43. Syurin V.N., Samuilenko A.Ya., Solov'ev B.V., Fomina N.V. Virusnye bolezni zhivotnykh. Moscow, 2001 (in Russ.).
  44. Rajcani J., Mosko T., Rezuchova I. Current developments in viral DNA vaccines: shall they solve the unsolved? Rev. Med. Virol., 2005, 15(5): 303-325 CrossRef
  45. Liu M.A., Wahren B., Hedestam G.B.K. DNA vaccines: recent developments and future possibilities. Hum. Gene Ther., 2006, 17(11): 1051-1061 CrossRef
  46. van Drunen L.H., Babiuk S.L., Babiuk L.A. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol. Rev., 2004, 199: 113-125 CrossRef
  47. Leifert J.A., Rodriguez-Carreno M.P., Rodriguez F., Whitton J.L. Targeting plasmid encoded proteins to the antigen presentation pathways. Immunol. Rev., 2004, 199(1): 40-53 CrossRef
  48. Rybakov S.S., Grubyi V.A. Veterinariya, 2014, 3: 3-9 (in Russ.).
  49. Argilaguet J.M., Perez-Martin E., Gallardo C., Salguero F.J., Borrego B., Lacasta A., Accensi F., Díaz I., Nofrarías M., Pujols J., Blanco E., Pérez-Filgueira M., Escribano J.M., Rodríguez F. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine, 2011, 29(33): 5379-5385 CrossRef
  50. Rodriguez J.M., Yanez R.J., Almazan F., Vinuela E., Rodriguez J.F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. J. Virol., 1993, 67(9): 5312-5320.
  51. Brossay A., Hube F., Moreau T., Bardos P., Watier H. Porcine CD58: cDNA cloning and molecular dissection of the porcine CD58-human CD2 interface. Biochem. Biophys. Res. Commun., 2003, 309: 992-998 CrossRef
  52. Crosby K., Yatko C., Dersimonian H., Pan L., Edge A.S. A novel monoclonal antibody inhibits the immune response of human cells against porcine cells: identification of a porcine antigen homologous to CD58. Transplantation, 2004, 77(8): 1288-1294.
  53. Ruffini P.A., Grodeland G., Fredriksen A.B., Bogen B. Human chemokine MIP1alpha increases efficiency of targeted DNA fusion vaccines. Vaccine, 2010, 29(2): 191-199 CrossRef
  54. Nchinda G., Kuroiwa J., Oks M., Trumpfheller C., Park C.G., Huang Y., Hannaman D., Schlesinger S.J., Mizenina O., Nussenzweig M.C., Überla K., Steinman R.M. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Invest., 2008, 118: 1427-1436 CrossRef
  55. Holliger P., Hudson P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol., 2005, 23(9): 1126-1136 CrossRef
  56. Demangel C., Zhou J., Choo A.B., Shoebridge G., Halliday G.M., Britton W.J. Single chain antibody fragments for the selective targeting of antigens to dendritic cells. Mol. Immunol., 2005, 42(8): 979-985 CrossRef
  57. Grossmann C., Tenbusch M., Nchinda G., Temchura V., Nabi G., Stone G.W., Kornbluth R.S., Überla K. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands. BMC Immunol., 2009, 10: 43 CrossRef
  58. Ivanovska N., Tchorbanov A., Prechl J., Maximova V., Voynova E., Vassilev T.L. Immunization with a DNA chimeric molecule encoding a hemagglutinin peptide and a scFv CD21-specific antibody fragment induces long-lasting IgM and CTL responses to influenza virus. Vaccine, 2006, 24(11): 1830-1837 CrossRef
  59. Pereboev A.V., Asiedu C.K., Kawakami Y., Dong S.S., Blackwell J.L., Kashentseva E.A., Triozzi P.L., Aldrich W.A., Curiel D.T., Thomas J.M., Dmitriev I.P Coxsackie virus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances adenoviral transduction of dendritic cells. Gene Ther., 2002, 9(17): 1189-1193 CrossRef
  60. Barry M.A., Howell D.P., Andersson H.A., Chen J.L., Singh R.A. Expression library immunization to discover and improve vaccine antigens. Immunol. Rev., 2004, 199: 68-83 CrossRef
  61. Talaat A.M., Stemke-Hale K. Expression library immunization: a road map for discovery of vaccines against infectious diseases. Infect. Immun., 2005, 73: 7089-7098 CrossRef
  62. Rodriguez F., Whitton J.L. Enhancing DNA immunization. Virology, 2000, 268(2): 233-238 CrossRef
  63. Rodriguez F., An L.L., Harkins S., Zhang J., Yokoyama M., Widera G., Fuller J.T., Kincaid C., Campbell I.L., Whitton J.L. DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. J. Virol., 1998, 72(2): 5174-5181.
  64. Lacasta A., Ballester M., Monteguado P.L., Rodriguez J.M., Salas M.L., Accensi F., Pina-Pedrero S., Bensaid A., Argilaguet J., López-Soria S., Hutet E., Le Potier M.F., Rodríguez F. Expression library immunization can confer protection against African swine fever virus lethal challenge. J. Virol., 2014, 88(22): 13322-13332 CrossRef
  65. Keil G.M., Klopfleisch C., Giesow K., Blohm U. Novel vectors for simultaneous high-level dual protein expression in vertebrate and insect cells by recombinant baculoviruses. J. Virol. Methods, 2009, 160: 132-137 CrossRef
  66. Kost T.A., Condreay J.P. Recombinant baculoviruses as mammalian cell gene delivery vectors. Trends Biotechnol., 2002, 20: 173-180 CrossRef
  67. O’Grady M., Batchelor R.H., Scheyhing K., Kemp C.W., Hanson G.T., Lakshmipathy U. BacMam-mediated gene delivery into multipotent mesenchymal stromal cells. Methods Mol. Biol., 2011, 698: 485-504 CrossRef
  68. Brun A., Albina E., Barret T., Chapman D.A., Czub M., Dixon L.K., Keil G.M., Klonjkowski B., Le Potier M.F., Libeau G., Ortego J., Richardson J., Takamatsu H.H. Antigen delivery systems for veterinary vaccine development viralvector based delivery systems. Vaccine, 2008, 26: 6508-6528 CrossRef
  69. Condreay J.P., Kost T.A. Baculovirus expression vectors for insect and mammalian cells. Curr. Drug Targets, 2007, 8(10): 1126-1131 CrossRef
  70. Huser A., Hofmann C. Baculovirus vectors: novel mammalian cell gene delivery vehicles and their applications. Am. J. Pharmacogenomics, 2003, 3: 53-63 CrossRef
  71. Koroleva N.N., Spirin P.V., Timokhova A.V., Rubtsov P.M., Kochetkov S.N., Prasolov V.S., Belzhelarskaia S.N. Baculovirus vectors for efficient gene delivery and expression in mammalian cells. Mol. Biol., 2010, 44(3): 541-550 CrossRef
  72. Kost T.A., Condreay J.P., Ames R.S., Rees S., Romanos M.A. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov. Today, 2007, 12: 396-403 CrossRef
  73. Li Y., Ye J., Cao S., Xiao S., Zhao Q., Liu X., Jin M., Chen H. Immunization with pseudotype baculovirus expressing envelope protein of Japanese encephalitis virus elicits protective immunity in mice. J. Gene Med., 2009, 11(2): 150-159 CrossRef
  74. Bai B., Lu X., Meng J., Hu Q., Mao P., Lu B., Chen Z., Yuan Z., Wang H. Vaccination of mice with recombinant baculovirus expressing spike or nucleocapsid protein of SARS-like coronavirus generates humoral and cellular immune responses. Mol. Immunol., 2008, 45: 868-875 CrossRef
  75. Tang X.C., Lu H.R., Ross T.M. Baculovirus-produced influenza virus-like particles in mammalian cells protect mice from lethal influenza challenge. Viral Immunol., 2011, 24(4): 311-319 CrossRef
  76. Wang S., Fang L., Fan H., Jiang Y., Pan Y., Luo R., Zhao Q., Chen H., Xiao S. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine, 2007, 25: 8220-8227 CrossRef
  77. Wu Q., Fang L., Wu X., Li B., Luo R., Yu Z., Jin M., Chen H., Xiao S. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol. Immunol., 2009, 46: 2210-2217 CrossRef
  78. Facciabene A., Aurisicchio L., La Monica N. Baculovirus vectors elicit antigen-specific immune responses in mice. J. Virol., 2004, 78: 8663-8672 CrossRef
  79. Borrego B., Fernandez-Pacheco P., Ganges L., Domenech N., Fernandez-Borges N., Sobrino F., Rodríguez F. DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses. Vaccine, 2006, 24: 3889-3899 CrossRef
  80. Ganges L., Barrera M., Núñez J.I., Blanco I., Frias M.T., Rodríguez F., Sobrino F. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine, 2005, 23: 3741-3752 CrossRef
  81. Wahren B., Liu M.A. DNA vaccines: recent developments and the future. Vaccines, 2014, 2(4): 785-796 CrossRef
  82. Cantlon J.D., Gord P.W., Bowen R.A. Immune responses in mice, cattle and horses to a DNA vaccine for vesicular stomatitis. Vaccine, 2000, 18(22): 2368-2374 CrossRef
  83. Mateen I., Irshad S. A review on DNA Vaccines. Journal of Health Sciences, 2011, 1(1): 1-7 CrossRef
  84. van Drunen S.L.H., Lawman Z., Wilson D., Luxembourg A., Ellefsen B., van den Hurk J.V., Hannaman D. Electroporation enhances immune responses and protection induced by a bovine viral diarrhea virus DNA vaccine in newborn calves with maternal antibodies. Vaccine, 2010, 28: 6445-6454 CrossRef
  85. Heegaard P.M., Dedieu L., Johnson N., Le Potier M.F., Mockey M., Mutinelli F., Vahlenkamp T., Vascellari M., Sørensen N.S. Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch. Virol., 2011, 156: 183-202 CrossRef
  86. Dale C.J., Thomson S., De Rose R., Ranasinghe C., Medveczky C.J., Pamungkas J., Boyle D.B., Ramshaw I.A., Kent S.J. Prime-boost strategies in DNA vaccines. Methods Mol. Med., 2006, 127: 171-197 CrossRef
  87. Radosevic K., Rodriguez A., Lemckert A., Goudsmit J. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev. Vaccines, 2009, 8(5): 577-592 CrossRef
  88. Korneva E.A. Allergiya, astma i klinicheskaya immunologiya, 2000, 8: 36-44 (in Russ.).