doi: 10.15389/agrobiology.2017.6.1105eng

UDC 636.5:637.692

Acknowlegdgements:
Supported financially by Russian Science Foundation (agreement № 17-16-01028).

 

DEEP PROCESSING OF COLLAGEN-RICH POULTRY PRODUCTS
FOR DIFFERENT USE (review)

V.I. Fisinin, D.Y. Ismailova, V.G. Volik, V.S. Lukashenko, I.P. Saleeva

Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, Federal Agency of Scientific Organizations,10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail lukashenko@vnitip.ru (corresponding author)

ORCID:
Fisinin V.I. orcid.org/0000-0003-0081-6336
Ismailova D.Y. orcid.org/0000-0003-3918-8752
Volik V.G. orcid.org/0000-0002-1798-2093
Lukashenko V.S. orcid.org/0000-0002-0107-8235
Saleeva I.P. orcid.org/0000-0002-7446-1593

Received June 22, 2017

 

The competitiveness of meat processing technologies requires deep processing of protein containing raw materials including low-value wastes and by-products of meat processing. The connective tissues after animal and poultry meat processing can reach 16 % of initial carcass weight and hence the reasonable utilization of these resources is reasonable. Low-value by-products can be transformed to protein products via hydrolysis resulting in the preparations of isolated collagen-rich high-purity proteins with key functional and technological properties for food, feed, medical, and cosmetic industries. Chicken skin (J. Stachowiac et al., 2004), necks and bones (M.I. Kremnevskaya et al., 2016; P.F. De Almeida et al., 2013), trachea of chickens, ducks and ostriches (T. Jaroenviriyapap et al., 2009) were studied as secondary collagen-rich raw materials. The most common techniques of collagen extraction are acidic and high-temperature hydrolysis (K.A. Munasinghe et al., 2014), papain and pepsin hydrolysis (P. Hashim et al., 2014), alkalase and trypsin hydrolysis (Z. Khiari et al., 2014) and microbial fermentation (A.Yu. Poletaev et al., 2011; O.V. Zinina et al., 2013). Deep processing of secondary collagen-rich raw materials in the meat industry will reduce the existing deficit of food and feed protein, expand the assortment and increase the output of meat products and low cost digestible feeds, and improve the ecological situation. For pharmacology, short peptides are of interest, the regulatory function of which has been known for a long time and is used in medicine (A.D. Neklyudov et al., 2007) which could be produced by deep processing of animal and poultry carcasses. The importance of dietary collagen is also associated with imino acids with -NH groups (proline, hydroxyproline) which are necessary for tissue growth and development (S. Busche, 2011). Different techniques of processing collagen-containing raw materials allow to manufacture protein products with specified properties for use in food, feed and other industries.

Keywords: collagen-containing animal wastes and by-products, enzymatic hydrolysis, short-run high-temperature hydrolysis.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Marggrander K., Hoffman K. Eigenschaften von Kollagen — hydroluisaten beim Zusatz zu Flescherzeugnissen und Fertigerichten. Fleischerei, 1993, 5: 350-354.
  2. Bronco S., Cappelli C., Monti S. Understanding the structural and binding properties of collagen: A theoretical perspective. J. Phys. Chem. B., 2004, 108(28): 10101-10112 CrossRef
  3. De Cupere V.M., Van Wetter J., Rouxhet P.G. Nanoscale organization of collagen and mixed collagen-pluronic adsorbed layers. Langmuir: The ACS Journal of Surfaces and Colloids, 2003, 19(17): 6957-6967 CrossRef
  4. Antipova L.V., Glotova I.A. Ispol'zovanie vtorichnogo kollagensoderzhashchego syr'ya myasnoi promyshlennosti [Use of secondary raw materials from meat production]. St. Petersburg, 2006 (in Russ.).
  5. Antipova L.V., Dvoryaninova O.P., Storublevtsev S.A., Cherkesov A.Z. Vestnik voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii, 2014, 3(61): 103-105 (in Russ.).
  6. Li G.Y., Fukunaga S., Takenouchi K.J. Physicochemical properties of collagen isolated from calf limed splits. Amer. Leather Chem. Ass., 2003, 98: 224-229.
  7. Stachowiac J., Smigielska H. Sorption of copper and zinc ions by various cereal bran and collagen and elastin preparations. Acta Sci. Pol., Technol. Aliment., 2004, 3(1): 5-12.
  8. Cliche S., Amiot J., Avezard C., Gariepy C. Extraction and characterization of collagen with or without telopeptides from chicken skin. Poultry Sci., 2003, 82(3): 503-509.
  9. Gonotskii V.A., Fedina L.P., Khvylya S.I., Krasyukov Yu.N., Abaldova V.A. Myaso ptitsy mekhanicheskoi obvalki [Mechanically deboned poultry meat]. Moscow, 2004 (in Russ.).
  10. Kremenevskaya M.I., Vikharev A.V., Abrosimova E.V. Myasnye tekhnologii, 2016, 2: 6-8 (in Russ.). 
  11. Jaroenviriyapap T., Vittayanont M. Type and content of chondroitin sulphate and collagen in poultry tracheas. Asian Journal of Food and Agro-Industry, 2009, 2(04): 974-980.
  12. Omokanwaye T., Wilson O.Jr., Iravani H., Kariyawasam P. Extraction and characterization of a soluble chicken bone collagen. IFMBE Proceedings, 2010, 32(4): 520-523.
  13. De Almeida P.F., Calarge F.A., Jose Carlos C. Santana. Production of a product similar to gelatin from chicken feet collagen. Eng. Agríc., 2013, 33(6): 1289-1300 CrossRef
  14. Munasinghe K.A., Schwarz J.G., Nyame A.K. Chicken collagen from law market value by-products as an alternate source. Journal of Food Processing, 2014, 2014: Article ID 298295 CrossRef
  15. Cansu Ü., Boran G. Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean J. Food Sci. Anim. Resour., 2015, 35(4): 431-440 CrossRef
  16. Hashim P., Mohd Ridzwan M.S., Bakar J. Isolation and characterization of collagen from chicken feet. International Journal of Bioengineering and Life Sciences, 2014, 8(3): 250-254.
  17. Dragunova M.M., Brekhova V.P. Tekhnika i tekhnologiya pishchevykh proizvodstv, 2014, 1(32): 18-21 (in Russ.).
  18. Poletaev A.Yu., Kriger O.B., Mitrokhin P.V. Tekhnika i tekhnologiya pishchevykh proizvodstv, 2011, 2(21): 49-52 (in Russ.).
  19. Zinina O.V., Tarasova I.V. Rebezov M.B. Vse o myase, 2013, 3: 41-43 (in Russ.).
  20. Postnikov S.I., Ryzhinkova S.I. Myasnaya industriya, 2009, 11: 43-45 (in Russ.).
  21. Semenova A.A., Trifonov M.V.  Myasnaya industriya, 2007, 5: 29-31 (in Russ.).
  22. Semenova A.A. Vse o myase, 2009, 2: 26-30 (in Russ.).
  23. Neklyudov A.D., Ivankin A.N. Kollagen: poluchenie, svoistva, primenenie [Collagen — production, charterizaion, and use]. Moscow, GOU VPO MGUL, 2007 (in Russ.).
  24. Busche S. Collagen based functional proteins. Fleisch Wirtschaft International, 2011, 3: 48. 
  25. Khiari Z., Ndagijimana M., Betti M. Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Sci., 2014, 93(9): 2347-2362 CrossRef
  26. Volik V.G., Ismailova D.Yu., Zinov'ev S.V., Erokhina O.N. Ptitsa i ptitseprodukty, 2017, 2: 40-42 (in Russ.). 
  27. Guoyao Wu. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. Journal of Animal Science and Biotechnology, 2014, 5: 34 CrossRef
  28. Wolfgang Siegert. Factors influencing the response of broiler chicken to glycine supplements in low crude protein diets. Dissertation submitted in fulfilment of the regulations to acquire the degree Doktor der Agrarwissenschaften (Dr. Sc. Agr. in Agricultural Sciences). Institute of Animal Science University of Hohenheim, 2016.
  29. Chernukha I.M., Lyublinskaya L.A., Fedulova L.V., Vasilevskaya E.R., Kotenkova E.A., Makarenko A.N. Vse o myase, 2015, 2: 14-17 (in Russ.).
  30. CHernukha I.M., Lyublinskaya L.A., Fedulova L.V., Makarenko A.N., Timokhina E.A. Vse o myase, 2013, 4: 14-17 (in Russ.).
  31. Chernukha I.M., Lyublinskaya L.A., Fedulova L.V., Vasilevskaya E.R., Makarenko A.N. Vse o myase, 2013,  5: 40-42 (in Russ.).
  32. Chernukha I.M., Lyublinskaya L.A., Fedulova L.V., Vasilevskaya E.R., Makarenko A.N., Timokhina E.A.   Vse o myase, 2014, 6: 36-39 (in Russ.).
  33. Ohlendieck K. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skeletal Muscle, 2011, 1: 6 CrossRef
  34. Xing T., Wang P., Zhao L., Liu R., Zhao X., Xu X., Zhou G. A comparative study of heat shock protein 70 in normal and PSE (pale, soft, exudative)-like muscle from broiler chickens. Poultry Sci., 2016, 95(10): 2391-2396 CrossRef
  35. Wu W., Fu Y., Therkildsen M., Li X.-M., Dai R.-T., Molecular understanding of meat quality through application of proteomics. Food Rev. Int., 2015, 31: 13-28 CrossRef
  36. Lomiwes D., Farouk M., Wiklund E., Young O. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci., 2014, 96: 26-40 CrossRef
  37. Zhang M., Wang D., Geng Z., Bian H., Liu F., Zhu Y., Xu W. The level of heat shock protein 90 in pig Longissimus dorsi muscle and its relationship with meat pH and quality. Food Chem., 2014, 165: 337-341 CrossRef
  38. Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol., 1999, 61: 243-282 CrossRef
  39. Yu J., Tang S., Bao E., Zhang M., Hao Q., Yue Z. The effect of transportation on the expression of heat shock proteins and meat quality of M. longissimus dorsi in pigs. Meat Sci., 2009, 83(3): 474-478 CrossRef
  40. Suchkov S.V., Gnatenko D.A., Kostyushev D.S., Krynskii S.A., Pal'tsev M.A. Vestnik RAMN, 2013, 1: 65-71 (in Russ.).
  41. Faustman C., Sun Q., Mancini R., Suman S.P. Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Science, 2010, 86: 86-94 CrossRef
  42. Liu G.-D/, Hou G.-Y., Wang D.-J., Lv S.-J., Zhang X.-Y., Sun W.-P., Yang Y. Skin pigmentation evaluation in broilers fed different levels of natural okra and synthetic pigments. J. Appl. Poult. Res., 2008, 17: 498-504 CrossRef
  43. Velasco V., Williams P. Improving meat quality through natural antioxidants. Chilean J. Agric. Res., 2011, 71(2): 313-322 CrossRef
  44. Lokaeivmanee K., Yamauchi K., Komori T., Saito K. Enhancement of yolk color in raw and boiled egg yolk with lutein from marigold flower meal and marigold flower extract. J. Poultry Sci., 2011, 48: 25-32 CrossRef
  45. Castaneda M., Hirschler E., Sams A. Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poultry Sci., 2005, 84(1): 143-147 CrossRef
  46. Perez-Vcndrell A., Hernandez J., Llaurado L., Schierle J., Brufau J. Influence of source and ratio of xanthophyll pigments on broiler chicken pigmentation and performance. Poultry Sci., 2001, 80: 320-326 CrossRef
  47. Karadas F., Grammenidis E., Surai P., Acamovic T., Sparks N. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Vrit. Poultry Sci., 2006, 47: 561-566 CrossRef
  48. Johnson EJ. The role of carotenoids in human health. Nutr. Clin. Care, 2002, 5: 56-65 CrossRef
  49. Satoh Y, Shikama K. Autoxidation of oxymyoglobin. A nucleophilic displacement mechanism. J. Biol. Chem., 1981, 256: 10272-10275.
  50. Wang S., Zhang L., Li J., Cong J., Gao F., Zhou G. Effects of dietary marigold extract supplementation on growth performance, pigmentation, antioxidant capacity and meat quality in broiler chickens. Asian-Australasian Journal of Animal Science, 2017, 30(1): 71-77 CrossRef
  51. Alves-Rodrigues A., Shao A. The science behind lutein. Toxicol. Lett., 2004, 150(1): 57-83 CrossRef
  52. Judge M., Reeves E., Aberle E. Effect of electrical stimulation on thermal shrinkage temperature of bovine muscle collagen. J. Anim. Sci., 1981, 52(3): 530-534 CrossRef
  53. Kim J.E., Clark R.M., Park Y., Lee J., Fernandez M.L. Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutr. Res. Pract., 2012, 6(2): 113-119 CrossRef
  54. Faustman C., Casscns R. The biochemical basis for discoloration in fresh meat: a review. J. Muscle Foods, 1990, 1: 217-243 CrossRef
  55. Gao J., Lin H., Wang X., Song Z., Jiao H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poultry Sci., 2010, 89: 318-327 CrossRef
  56. Barbut S., Sosnicki A.A., Lonergan S.M., Knapp T., Ciobanu D.C., Gatc-
    liffe L.J., Huff-Lonergan E., Wilson E.W. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci., 2008, 79(1): 46-63 CrossRef
  57. Kim Y.H.B., Warner R.D., Rosenvold K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci., 2004, 54: 375-395 CrossRef
  58. Adzitey F., Nurul H. Pale soft exudative (PSE) and dark firm dry (DFD) meats: Causes and measures to reduce these incidences-a mini review. International Food Research Journal, 2011, 18: 11-20.
  59. Xing T., Xu X., Zhou G., Wang P., Jiang N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J. Anim. Sci., 2015, 93(1): 62-70 CrossRef

back