doi: 10.15389/agrobiology.2016.6.912eng

UDC 636.52/.58:636.087.7:[546.72-022.532+577.112.3

We thank Dr N.N. Glushchenko (Institute of Energy Problems of Chemical Physics, RAS, Moscow) for kindly providing the Fe nanoparticles used in the study.
Hematological studies were performed using standard techniques in the Laboratory of Agroecology of Nanomaterials and Test Center of All-Russian Research Institute of Beef CattleBreeding (accreditation certificate RA. RU.21PF59 of 12/02/15)
Supported by Russian Scienсe Foundation (project № 14-16-00060)

(ORCID: Sizova Е.А.



E.V. Yausheva1, S.A. Miroshnikov1, D.B. Kosyan1, 2, Е.А. Sizova1, 2

1All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail,;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia

Received September 1, 2016


The prospects of using metal nanoparticles to stimulate productivity of farm animals are widely discussed. However, nano-sized materials exhibit various negative properties, such as pro-oxidant effects, and can provoke apoptosis and kidney damage. A possible approach is the use of ultrafine materials in combination with agents leveling adverse effects of nanoparticles. For the first time we studied the prospects of joint use of iron and arginine nanoparticles, the mechanism of their interaction and influence on the productivity of poultry and demonstrated that their simultaneous application promote live weight gain. We formed 6 groups (n = 30) of 11-day old broilers of the cross Smena 8. The poultry was injected twice (after 2 week intervals) with iron nanoparticles and fed either with dietary arginine (the amino acid which is known to influence metabolism and immune response and considered as conditionally essential for inflammatory and oxidative stress), or the mixture of arginine, lysine and methionine. Our experiments showed that the joint use of iron nanoparticles and arginine increased the weight gain up to 9.2 % as compared to the control, and moreover, the iron nanoparticles together with a mixture of amino acids provided an increase up to 20 %. Withal, the nanoparticles and amino acids when applied separately resulted in lower weight gain, and at the end of the experiment the body weight of broilers fed with dietary arginine (group II) and those injected with iron nanoparticles (group III) increased by 6.1 and 5.9 % (P ≤ 0.05), respectively. Intramuscular administration of iron nanoparticles (the poultry groups III, IV and VI) promoted the immune response that was manifested in enhanced level of leukocytes — by 8.12; 10.50 and 3.88 % (P ≤ 0.05), respectively, on the day 1, and by 7.3; 8.19 and 4.00 % (P ≤ 0.05), respectively, in a week. The study of NO-metabolites showed an increased level in blood and liver (by 3-4 %) only in groups III, IV and VI. Singly injected iron nanoparticles (group III) changed metabolism of arginine and increased its level by 3.83 % (P ≤ 0.05). Thus the joint use of iron nanoparticles and the complex of arginine with other amino acids is most likely to be helpful in the poultry meat production.

Keywords: nanoparticles cooper, broiler chicks, growth intensity, chemical elements, biochemical and morphological parameters of blood.


Full article (Rus)

Full text (Eng)



  1. Abramyan A., Beklemyshev V., Solodovnikov I., Letov A., Filippov K., Makhonin I. Nanoindustriya, 2007, 6: 24-25 (in Russ.).
  2. Il'ichev E., Nazarova A., Polishchuk S., Inozemtsev V. Molochnoe i myasnoe skotovodstvo, 2011, 5: 27-29 (in Russ.).
  3. Nikonov I.N., Folmanis Yu.G., Folmanis G.E., Kovalenko L.V., Laptev G.Yu., Egorov I.A., Fisinin V.I., Tananaev I.G. Doklady akademii nauk, 2011, 440(4): 565-569 (in Russ.).
  4. Bogoslovskaya O.A., Sizova E.A., Polyakova V.S., Miroshnikov S.A., Leipunskii I.O., Ol'khovskaya I.P., Glushchenko N.N. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2009, 2: 124-127 (in Russ.).
  5. Aslam M.F., Frazer D.M., Faria N., Bruggraber S.F.A., Wilkins S.J., Mirciov C., Powell J.J., Anderson G.J., Pereira D.I.A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB J., 2014, 28(8): 3671-3678.
  6. Li N., Sioutas C., Cho A., Misra C., Sempf J., Wang M., Oberley T., Froines J., Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochrondrial damage. Environmental Health Perspectives, 2003, 111: 455-460.
  7. Møller P., Jacobsen N.R., Folkmann J.K., Danielsen P.H., Mikkelsen L., Hemmingsen J.G., Vesterdal L.K., Forchhammer L., Wallin H., Loft S. Role of oxidative damage in toxicity of particulates. Free Radical Research, 2010, 44(1): 1-46 CrossRef
  8. Sizova E.A., Miroshnikov S.A., Polyakova V.S., Lebedev S.V., Glushchenko N.N. Morfologiya, 2013, 144(4): 47-52 (in Russ.).
  9. Polyakova V.S., Sizova E.A., Miroshnikov S.A., Notova S.V., Zavaleeva S.M. Morfologiya, 2015, 148(6): 54-58 (in Russ.).
  10. BeruBe K., Balharry D., Sexton K., Koshy L., Jones T. Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology, 2007, 34(10): 1044-1050 CrossRef
  11. Sizova E., Glushchenko N., Miroshnikov S., Skalny A. Inflluence of Cu10x copper nanoparticles intramuscular injection on mineral composition of rat spleen. Journal of Trace Elements in Medicine and Biology, 2011, 25: 84-89.
  12. Sizova E., Yausheva E., Kosyan D., Miroshnikov S. Growth enhancement by intramuscular injection of elemental iron nano- and microparticles. Modern Applied Science, 2015, 9(10): 17-26 CrossRef
  13. Huang C.C., Tsai S.C., Lin W.T. Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp. Gerontol., 2008, 43(6): 571-577 CrossRef
  14. Mostafavi-Pour Z., Zal F., Monabati A., Vessal M. Protective effects of a combination of Quercetin and vitamin E against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Hepatol. Res., 2008, 38(4): 385-392 CrossRef
  15. Flynn N.E., Meininger C.J., Haynes T.E., Wu G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharmacother., 2002, 56: 427-438.
  16. Nairz M., Schleicher U., Schroll A., Sonnweber T., Theurl I., Ludwiczek S., Talasz H., Brandacher G., Moser P.L., Muckenthaler M.U., Fang F.C., Bogdan C., Weiss G.J. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J. Exp. Med., 2013, 210(5): 855-873 CrossRef
  17. Faddah L.M., Abdel Baky N.A., Al-Rasheed N.M., Al-Rasheed N.M., Fatani A.J., Atteya M. Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats. BMC Complementary and Alternative Medicine, 2012, 12: 1062 CrossRef
  18. Sipailova O.Yu., Lebedev S.V., Sizova E.A. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii, 2011, 9(8): 43-46 (in Russ.).
  19. Sakomura N.K., Ekmay R.D., Mei S.J., Coon C.N. Lysine, methionine, phenylalanine, arginine, valine, isoleucine, leucine, and threonine maintenance requirements of broiler breeders. PoultrySci., 2015, 94(11): 2715-2721 CrossRef
  20. Fisinin V.I., Egorov I.A., Lenkova T.N., Okolelova T.M., Ignatova G.V., Shevyakov A.N. et al. Metodicheskie ukazaniya po optimizatsii retseptov kombikormov dlya sel'skokhozyaistvennoi ptitsy [Guidelines for the optimization of animal feed recipes for poultry. VNITIP]. Moscow, 2009 (in Russ.).
  21. Mazhitova M.V. Sovremennye problemy nauki i obrazovaniya, 2011, 3: 2-9 (in Russ.).
  22. Chamruspollert M., Pesti M., Bakalli R.I. Dietary interrelationships among arginine, methionine, and lysine in young broiler chicks. Brit. J. Nutr., 2002, 88(6): 655-660.
  23. Ekmay R.D., De Beer M., Mei S.J., Manangi M., Coon C.N. Amino acid requirements of broiler breeders at peak production for egg mass, body weight, and fertility. Poultry Sci., 2013, 92(4): 992-1006 CrossRef
  24. Szabó J., Andrásofszky E., Tuboly T., Bersényi A., Weisz A., Hetényi N., Hullár I. Effect of arginine or glutamine supplementation on production, organ weights, interferon gamma, interleukin 6 and antibody titre of broilers. Acta Vet. Hung., 2014, 62(3): 348-361.
  25. Bautista-Ortega J., Cortes-Cuevas A., Ellis E.A., Ruiz-Feria C.A. Supplemental L-arginine and vitamins E and C preserve xanthine oxidase activity in the lung of broiler chickens grown under hypobaric hypoxia. Poultry Sci., 2014, 93(4): 979-988.
  26. Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., Nazaran M.H. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Brit. Poultry Sci., 2015, 56(4): 486-493.
  27. Dzarová A., Dubnicková M., Závišová V., Koneracká M., Kopcan-
    ský P., Gojzewski H., Timko M. The influence of magnetite nanoparticles on human. Journal of Life Sciences, 2010, 4(5): 37-43.
  28. Yu S.S., Lau C.M., Thomas S.N., Jerome W.G., Maron D.J., Dickerson J.H., Hubbell J.A., Giorgio T.D. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int. J. Nanomedicine, 2012, 7: 799-813.
  29. Suchner U., Heyland D.K., Peter K. Immune-modulatory actions of arginine in the critically ill. Brit. J. Nutr., 2002, 87: 121-132.
  30. Huang C.C., Lin T.J., Lu Y.F., Chen C.C., Huang C.Y., Lin W.T. Protective effects of L-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues. Chinese J. Physiol., 2009, 52(5): 306-315.
  31. Lin W.T., Yang S.C., Chen K.T., Huang C.C., Lee N.Y. Protective effects of L-arginine on pulmonary oxidative stress and antioxidant defenses during exhaustive exercise in rats. Acta Pharmacologica Sinica, 2005, 26(8): 992-999 CrossRef
  32. Ahamed M., Akhtar M.J., Siddiqui M.A., Ahmad J., Musarrat J., Al-Khedhairy A.A., AlSalhi M.S., Alrokayan S.A. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 2011, 283(2-3): 101-108 CrossRef
  33. Weiss G., Werner-Felmayer G., Werner E.R., Grünewald K., Wachter H., Hentze M.W. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J. Exp. Med., 1994, 180: 969-976.
  34. Dlaska M., Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. J. Immunol., 1999, 162: 6171-6177.