doi: 10.15389/agrobiology.2016.6.845eng

UDC 619:616.98:578.842.1:57.083.3



O.M. Strizhakova, V.M. Lyska, A.S. Malogolovkin, M.B. Novikova,
M.V. Sidlik, I.V. Nogina, A.E. Shkaev, E.A. Balashova, V.V. Kurinnov,
A.P. Vasil’ev

All-Russian Institute of Veterinary Virology and Microbiology, Federal Agency of Scientific Organizations, 1, ul. Akademika Bakuleva, pos. Vol’ginskii, Petushinskii Region, Vladimir Province, 601120 Russia, e-mail

Received September 25, 2016


The causal agent of African swine fever (ASF) is a DNA virus belonging to Asfaviridae family which affects both wild boar Sus scrofa and domestic pig Sus scrofa domestica. Special features of the course of (ASF and its forms should be considered for the effective use of various ASF diagnostic methods aimed at the pathogen or specific antibody identification. ASF diagnosis in the wild boar is of special importance. The wild boar susceptibility to ASF virus is well known, and the disease has been repeatedly reproduced in experiments and detected in European wild boars in natural conditions. It is not unfrequently that when shooting wild boars, only organ samples are delivered to laboratories, so we decided to estimate the diagnostic value of the antibodies detected in tissues and evaluate an earlier developed test system for its efficacy when used for the assay. This report represents the results of validation of an indirect ELISA (a commercial kit «VNIIVViM ASF-ELISA Ab/Ag») ASF virus specific antibody detection in blood serum and spleen tissue extracts. For comparison, an indirect immunofluorescence assay (indirect IFA) was used. To estimate the obtained results, ROC analysis was applied. Examination of positive (n = 66) and negative (n = 410) porcine blood serum samples using indirect ELISA showed high sensitivity and specificity of the method with reference to IFA. Among the 476 serum samples examined in indirect ELISA, only 8 sera (1.6 %) were within the positive/negative cutoff area. The highest sensitivity (100 %) and specificity (99.27 %) for indirect ELISA when examining both domestic pig and wild boar blood sera were determined at a cutoff value of 0.264. The samples of spleen extracts to be used for the study were collected from clinically healthy wild boars in ASF-affected Smolensk region in 2013 to 2014. In view of an acute form of the disease, we can suspect that the animals exhibiting positive reaction were in a latency period of the pathogeny. When examining the positive (n = 59) and negative (n = 678) spleen extracts, we also determined high sensitivity and specificity levels of indirect ELISA with reference to indirect IFA. Among the samples examined (n = 737), 10 (1.3 %) samples of spleen extracts were within the positive/negative cutoff area. The highest sensitivity (100 %) and specificity (98.82 %) were observed at a cutoff value of 0.284. Thus, we confirmed the assay to be effective for porcine blood sera with 100 % sensitivity (94.6 to 100 %) and 99.27 % specificity (97.90 to 99.80 %) and for spleen extracts with 100 % sensitivity (93.90 to 100 %) and 98.82 % specificity (97.70 to 99.50 %).

Keywords: African swine fever, specific antibody, indirect ELISA, ROC analysis.


Full article (Rus)

Full text (Eng)



  1. Kurinnov V.V., Kolbasov D.V., TSybanov S.Zh., Vasil'ev A.P., Shendrik A.G., Balyshev V.M., Mikolaichuk S.V., Belyanin S.A., Kalantaenko Yu.F., Zhukov A.N. Zhizn' bez opasnostei, 2010, 3: 82-87 (in Russ.).
  2. Atuhaire D.K., Afayoa M., Ochwo S., Mwesigwa S., Mwiine F.N., Okuni J.B., Olaho-Mukani W., Ojok L. Prevalence of African swine fever virus in apparently healthy domestic pigs in Uganda. BMC Vet. Res., 2013, 9: 263-271 CrossRef
  3. Gallardo C., Reoyo A.T., Fernández-Pinero J., Iglesias I., Muñoz J., Arias L. African swine fever: a global view of the current challenge. Porcine Health Management, 2015, 1: 21 CrossRef
  4. Carrasco L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol., 2015, 152: 9-21 CrossRef
  5. Guinat C., Reis A.L., Netherton C., Goatley L., Pfeiffer D., Dixon L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Vet. Res., 2014, 45: 93 CrossRef
  6. Diseases of swine. D.J. Taylor, J.J. Zimmerman, S. D’Allaire (eds.) Iowa State University Press, 2006.
  7. Gallardo C., Soler A., Nieto R., Cano C., Pelayo V., Sánchez M.A., Pridotkas G., Fernandez-Pinero J., Briones V., Arias M. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transbound. Emerg. Dis., 2015 Mar 22: 1-5 CrossRef [Epub ahead of print].
  8. Boinas F.S., Hutchings G.H., Dixon L.K., Wilkinson P.J. Characterisation of pathogenic and non-pathogenic African swine fever virus isolated from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol., 2004, 5(8): 2117-2187 CrossRef
  9. Howey E.B., O’Donnell V., de Carvalho Ferreira H.C., Borca M.V., Arzt J. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Res., 2013, 178: 328-339 CrossRef
  10. Charleston B., Bankowski B.M., Gubbins S., Chase-Topping M.E., Schley D., Howey R., Barnett P.V., Gibson D., Juleff N.D., Woolhouse M.E. Relationship between clinical signs and transmission of an infectious disease and the implications for control. Science, 2011, 332: 726-729 CrossRef
  11. Botija S., Ordas A. Rapid diagnosis by identification of antibodies extracted from tissues using indirect immunofluorescence. Hog Cholera. In: Classical swine fever and African swine fever. Luxembourg, 1977: 658-659.
  12. Reis A.L., Parkhouse R.M., Penedos A.R., Martins C., Leitão A.. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. J. Gen. Virol., 2007, 88: 2426-2434 CrossRef
  13. Pérez J., Fernández A.I., Sierra M.A., Herraez P., Fernández A. Serological and immunohistochemical study of African swine fever in wild boar in Spain. Vet Rec., 1998, 143: 136-139.
  14. Gallardo C., Soler A., Nieto R., Carrascosa A.L., De Mia G.M., Bishop R.P., Martins C., Fasina F.O., Couacy-Hymman E., Heath L., Pelayo V., Martín E., Simón A., Martín R., Okurut A.R., Lekolol I., Okoth E., Arias M. Comparative evaluation of novel African swine fever virus (ASF) antibody detection techniques derived from specific ASF viral genotypes with the OIE internationally prescribed serological tests. Vet. Microbiol., 2013, 162: 32-43 CrossRef
  15. Kurinnov V.V., Vasil'ev A.P., Belyanin S.A., Strizhakova O.M., Nogina I.V., Sidlik M.V., Gazaev I.Kh., Tsybanov S.Zh., Mironova L.P., Alikova G.A., Dzhailidi G.A., Chernykh O.Yu. Veterinariya Kubani, 2014, 3: 5-9 (in Russ.).
  16. Kurinnov V.V., Belyanin S.A., Vasil'ev A.P., Strizhakova O.M., Lyska V.M., Nogina I.V., Zubairova S.N., Balyshev V.M., Tsybanov S.Zh., Kolbasov D.V., Mironova P.L., Chernykh O.Yu., Alikova G.A. Veterinariya Kubani, 2012, 4: 9-11 (in Russ.).
  17. Cubillos C., Gómez-Sebastian S., Moreno N., Nuñez M.C., Mulumba-Mfumu L.K., Quembo C.J., Heath L., Etter E.M.C., Jori F., Escribano J.M., Blanco E. African swine fever virus serodiagnosis: A general review with a focus on the analyses of African serum samples. Virus Res., 2013, 173(1): 159-167 CrossRef
  18. Nieto-Pelegr E., Rivera-Arroyo B., Sanchez-Vizca?no J.M. First detection of antibodies against African swine fever virus in faeces samples. Transbound. Emerg. Dis., 2015, 62(6): 594-602 CrossRef
  19. Zsak L., Borca M., Risatti G., Zsak A., French R., Lu Z., Kutish G., Neilan J., Callahan J., Nelson W. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J. Clin. Microbiol., 2005, 43: 112-119 CrossRef
  20. Makarov V.V., Sukharev O.I., Boev B.V., Gavryushkin D., Kolomytsev A.A., Litvinov O.B. Veterinariya, 2010, 9: 24-28 (in Russ.).
  21. Khomenko S., Beltrán-Alcrudo D., Rozstalnyy A., Gogin A., Kolbasov D., Pinto J., Lubroth J., Martin V. African swine fever in the Russian Federation: risk factors for Europe and beyond. EMPRES Watch, 2013, 28: 1-14.
  22. Manual of diagnostic tests and vaccines for terrestrial animals. 7th Ed. OIE, France. 2012. Available No date.
  23. Gardner A., Greiner M., Dubey J. Statistical evaluation of test accuracy studies for Toxoplasma gondii in food animal intermediate hosts. Zoonoses and Public Health, 2010, 57: 82-94 CrossRef
  24. Greiner M., Sohr D., Gijbel P. A modified ROC analysis for the selection of cut-off values and the definition of intermediate results of serodiagnostic tests. J. Immunol. Methods, 1995, 185: 123-132.
  25. The ELISA guidebook. J.R. Crowther (ed.). Vienna, 2009.
  26. Jacobson R.H. Validation of serological assays for diagnosis of infectious diseases. Rev. Sci. Tech. OIE, 1998, 17(2): 469-486.
  27. Tignon M., Gallardo C., Iscaro C., Hutet E., Van der Stede Y., Kolbasov D., De Mia G.M., Le Potier M.-F., Bishop R.P., Arias M. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. J. Virol. Methods, 2011, 178: 161-170 CrossRef