doi: 10.15389/agrobiology.2016.6.929eng

UDC 615.9:546.77-022.532]:57.084.1

Acknowledgements:
Studies were performed using standard techniques in the Laboratory of Agroecology of Nanomaterials and Test Center of All-Russian Research Institute of Beef CattleBreeding (accreditation certificate RA. RU.21PF59 from 12/02/15). Analysis of chemical elements was performed in the laboratory of ANO Center for Biotic Medicine, Moscow (accreditation certificate GSEN.RU.TSAO.311, registration number in the State Register ROSS RU. 0001.513118)
Supported by Russian Scienсe Foundation (project № 14-36-00023)

(ORCID: Sizova Е.А. orcid.org/0000-0002-5125-5981)

 

MORPHOLOGICAL AND BIOCHEMICAL PARAMETERS IN Wistar RATS
INFLUENCED BY MOLYBDENUM AND ITS OXIDE NANOPARTICLES

Е.А. Sizova1, 2, S.A. Miroshnikov1, V.V. Kalashnikov3

1All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail sizova-l78@ya.ru, vniims.or@mail.ru;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia;
3All-Russian Research Institute of Horse Breeding, Federal Agency of Scientific Organizations, pos. Divovo, Rybnovskii Region, Ryazan Province, 391105 Russia

Received July 11, 2016

 

Despite widespread use of nanoparticles in industry and medicine, there is very little information about how the newly developed nanomaterials interact with biological objects. Certain properties of the Mo-containing nanoparticles (NPs) suggest their possible toxic effect on warm-blooded animals. In this paper we compared the effect of Mo NPs (at 1 and 25 mg/kg) and its oxide MoO3 NPs (at 1.2 and 29 mg/kg), when administrated parenterally, on metabolic parameters and the exchange of chemical elements in Wistar laboratory rats. There, we assessed the red and white blood cell counts, the hemoglobin level, the activity of catalase (CAT) and superoxide dismutase (SOD) (for oxidative status), the ALT, AST, LDH, GGT, creatine kinase activity, blood creatinine, bilirubin and urea concentrations (for metabolic status) at days 1, 7 and 14. A day after Mo NPs and MoO3 NPs administration the number of blood leukocyte lowered by 11.3 % (Р < 0.05) and 58.5 % (Р < 0.01), respectively. Also, a decrease in monocyte number by 18.9 (Р < 0.05), 41.9 (Р < 0.01), 51.7 (Р < 0.05) and 83.3 % (Р < 0.001) as depending on NPs chemical composition and doses was characteristic, though on day 14 a significant difference to control (54.5 %, Р < 0.05) was found only for MoO3 NPs at a dose of 29 mg/kg. The number of thrombocytes was the highest on day 14 for the maximum dosage of both NPs leading to hindered blood microcirculation. The experiments also showed an increase in serum aminotransferases, GGT and LDH activity. In sum, we observed manifestations of oxidative stress, anemia and capillary-trophic insufficiency in the animals administrated with high doses of molybdenum and Mo oxide NPs. These signs were progressing and the most apparent for molybdenum oxide NPs. Given the comparable doses used, the molybdenum nanoparticles exhibit lower toxicity as compared to its oxide.

Keywords: catalase, superoxide dismutase, glutamyl transferase, lactate dehydrogenase, aminotransferase, nanoparticles of molybdenum, nanoparticles of molybdenum trioxide.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Chen Y.X., Wu C.W., Kuo T.Y., Chang Y.L., Jen M.H., Chen I.W. Large-scale production of large-size atomically thin semiconducting molybdenum dichalcogenide sheets in water and its application for supercapacitor. Sci. Rep., 2016, 26(6): 26660 CrossRef
  2. Naylor C.H., Kybert N.J., Schneier C., Xi J., Romero G., Saven J.G., Liu R., Johnson A.T. Scalable production of molybdenum disulfide based biosensors. ACS Nano, 2016, 10(6): 6173-6179 CrossRef
  3. Tadi K.K., Palve A.M., Pal S., Sudeep P.M., Narayanan T.N. Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis. Nanotechnology, 2016, 27(27): 275402 CrossRef
  4. Parenago O.P., Bakunin V.N., Kuz'mina G.N., Suslov A.L., Vedeneeva L.M. DAN, 2002, 383(1): 84-86 (in Russ.).
  5. Liu Q., Sun C., He Q., Liu D., Khalil A., Xiang T., Wu Z., Wang J., Song L. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. (Camb.), 2015, 51(49): 10054-10057 CrossRef
  6. Fakhri A., Nejad P.A. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J. Photochem. Photobiol. B, 2016, 159: 211-217 CrossRef
  7. Zhang W., Shi S., Wang Y., Yu S., Zhu W., Zhang X., Zhang D., Yang B., Wang X., Wang J. Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale, 2016, 8(22): 11642-11648 CrossRef
  8. Qureshi N., Chaudhari R., Mane P., Shinde M., Jadakar S., Rane S., Kale B., Bhalerao A., Amalnerkar D. Nanoscale Mo-MoO3 entrapped in engineering thermoplastic: inorganic pathway to bactericidal and fungicidal action. IEEE Transactions on NanoBioscience, 2016, 15(3): 258-264 CrossRef
  9. Sam J.S., Yuvakkumar R., Suriya P.R., Karunakaran G., Rajendran V., Hong S.I. Facile and novel synthetic method to prepare nano molybdenum and its catalytic activity. IET Nanobiotechnology, 2015, 9(4): 201-208 CrossRef
  10. Mendel R.R., Bittner F. Cell biology of molybdenum. BBA, 2006, 1763: 621-635 CrossRef
  11. McBride M.B., Richards B.K., Steenhuis T., Spiers G. Molybdenum uptake by forage crops grown on sewage sludge-amended soils in the field and greenhouse. J. Environ. Qual., 2000, 29: 848-854.
  12. He Z.L.L., Yang X.E., Stoffella P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Bio., 2005, 19: 125-140 CrossRef
  13. Van Gestel C.A.M., Borgman E., Verweij R.A., Diez-Ortiz M. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotox. Environ. Safe., 2011, 74: 1-9 CrossRef
  14. Lebedev S., Yausheva E., Galaktionova L., Sizova E. Impact of molybdenum nanoparticles on survival, activity of enzymes, and chemical elements in Eisenia fetida using test on artificial substrata. Environ. Sci. Pollut. Res. Int., 2016, 23(18): 18099-18110.
  15. Kosyan D., Rusakova E., Sizova E., Miroshnikov S., Skalniy A. Impact of nanoparticles of heavy metals and their oxides on Stylonychia mytilus. Ecology, Environment and Conservation, 2015, 21: 113-119.
  16. Fernández-Urrusuno R., Fattal E., Rodrigues J.M., Féger J., Bedossa P., Co-
    uvreur P. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J. Biomed. Mater. Res., 1996, 31(3): 401-408.
  17. Yausheva E.V., Miroshnikov S.A., Kvan O.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2013, 12(161): 203-207 (in Russ.).
  18. Ott H.C., Prior C., Herold M., Riha M., Laufer G., Ott G. Respiratory symptoms and bronchoalveolar lavage abnormalities in molybdenum exposed workers. WienKlinWochenschr., 2004, 116(1): 25-30.
  19. Khanturina G.R., Ibraeva L.K., Lebedeva E.A. Uspekhi sovremennogo estestvoznaniya, 2012, 12: 11-13 (in Russ.).
  20. Ostroushko A.A., Danilova I.G., Medvedeva S.Yu., Gette I.F., Tonkushina M.O. Ural'skii meditsinskii zhurnal, 2010, 9(74): 114-117 (in Russ.).
  21. Ostroushko A.A., Gette I.F., Danilova I.G., Medvedeva S.Yu., Tonkushina M.O., Prokof'eva A.V. Ural'skii meditsinskii zhurnal, 2011, 11(89): 75-79 (in Russ.).
  22. Asadi F., Mohseni M., Dadashi Noshahr K., Soleymani F.H., Jalilvand A., Heidari A. Effect of Molybdenum nanoparticles on blood cells, liver enzymes, and sexual hormones in male rats. Biol. Trace Elem. Res., 2016: 1-7 CrossRef
  23. Siddiqui M.A., Saquib Q., Ahamed M., Farshori N.N., Ahmad J., Wahab R., Khan S.T., Alhadlaq H.A., Musarrat J., Al-Khedhairy A.A., Pant A.B. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids and Surfaces B: Biointerfaces, 2015, 1(125): 73-81 CrossRef
  24. Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro, 2005, 19(7): 975-983 CrossRef
  25. Akhtar M.J., Ahamed M., Alhadlaq H.A., Alshamsan A., Khan M.A., Alrokayan S.A. Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. J. Colloid Interf. Sci., 2015, 457: 370-377 CrossRef
  26. Zhou S., Zhang C., Xiao Q., Zhuang Y., Gu X., Yang F., Xing C., Hu G., Cao H. Effects of different levels of molybdenum on rumen microbiota and trace elements changes in tissues from goats. Biol. Trace Elem. Res., 2016, 174(1): 1-8 CrossRef
  27. Bourke C.A. Molybdenum deficiency produces motor nervous effects that are consistent with amyotrophic lateral sclerosis. Front. Neurol., 2016, 7: 28 CrossRef
  28. Huang X., Xie J., Cui X., Zhou Y., Wu X., Lu W., Shen Y., Yuan J., Chen W. Association between concentrations of metals in urine and adult asthma: a case-control study in Wuhan, China. PLoS ONE, 2016, 11(5): e0155818 CrossRef
  29. Chan P.C., Herbert R.A., Roycroft J.H., Haseman J.K., Grumbein S.L., Miller R.Al. Lung tumor induction by inhalation exposure to molybdenum trioxide in rats and mice. Toxicol. Sci., 1998, 45(1): 58-65.

back