doi: 10.15389/agrobiology.2016.6.903eng

UDC 636.52/.58:636.087.72: 546.56-022.532

Chemical analysis was performed in the Laboratory of Agroecology of Nanomaterials and Test Center of All-Russian Research Institute of Beef CattleBreeding (accreditation certificate RA. RU.21PF59 of 12/02/15). Сhemical analysis was performed in the laboratory of ANO Center for Biotic Medicine, Moscow (accreditation certificate GSEN.RU.TSAO.311, registration number in the State Register ROSS RU. 0001.513118)
Supported by Russian Scienсe Foundation (project № 14-36-00023)

(ORCID: Sizova Е.А.



Е.А. Sizova1, 2, V.L. Korolev1, Sh.A. Makaev1, E.P. Miroshnikova2,
V.A. Shakhov3

1All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail,;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia;
3All-Russian Research Institute of Horse Breeding, Federal Agency of Scientific Organizations, pos. Divovo, Rybnovskii Region, Ryazan Province, 391105 Russia

Received July 11, 2016


Diets of modern crosses and breeds of farm animals require mandatory correction of mineral nutrition. Ionic forms commonly used for correction are characterized by low bioavailability, prooxidant effect, and high toxicity in vivo. That is why low-toxic sources of essential chemical elements are of particular interest, including nanocrystalline metals. We firstly assessed the efficient of nanosized copper on the model of broiler chickens. A comparative study of productive and biological effects of copper nanoparticles (CuNPs) and сopper sulfate was carried out on Smena 7 chickens of 14-42 days of age using different administration methods. Hematologic and biochemical parameters and elemental composition of tissues were assessed. We revealed an increase in red blood cells and hemoglobin and decrease of platelets at the highest doses of Cu NPs administrated orally or intramuscularly. The biochemical blood parameters assessed indicated an enhancement of plastic processes in the body and, as a consequence, an increase in the growth rate under Cu NPs administration. The difference of the total protein compared to the control (33.6 %, p < 0.05) was the highest when Cu NPs injected at a dose of 2 mg/kg which increased the supply of protein synthesis. The albumin level was higher in 28-day old chicks injected with Cu NPs (2 and 0.2 mg/kg). A replacement of dietary CuSO4 with dietary Cu NPs led to an increase in the growth rate. When Cu NPs fed, the found biochemical parameters indicated strengthening of energy and synthetic processes in the body, and therefore, an increase in the poultry growth. At 1.7 mg/kg of dietary Cu NPs the gained weight was 13.5-23.8 % (p < 0.01 to p < 0.001) more as compared to the control. Dietary Cu NPs at 0.7 mg/kg was not enough to highly stimulate the poultry growth and resulted in the weight gain which was lower than in the poultry fed with Cu NPs at 1.7 mg/kg but higher (by 8.5-18.4 %, p < 0.01 to p < 0.01) as compared to the poultry not fed with Cu NPs. Thus, the promoting effect depends on the form of copper source. The Cu NPs effectiveness under enteral administration at 1.7 mg/kg or intramuscular double injections at 0.2 mg/kg was superior to that of dietary copper sulfate.

Keywords: nanoparticles, cooper, broiler chicks, growth intensity, chemical elements, blood, biochemical and morphological parameters.


Full article (Rus)

Full text (Eng)



  1. Fisinin V.I., Egorov I.A. Ptitsa i ptitsevodstvo, 2015, 3: 27-29 (in Russ.).
  2. Notova S.V., Miroshnikov S.A., Bolodurina I.P., Didikina E.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2006, 2: 59-63 (in Russ.).
  3. Miroshnikov S.A., Burtseva T.I., Golubkina N.A., Notova S.V., Skal'nyi A.V., Burlutskaya O.I. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2008, 12: 97 (in Russ.).
  4. Sokolova O.Ya., Miroshnikov S.A., Drozdova E.A., Kholodilina T.N. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2006, 12(62-2): 230-232 (in Russ.).
  5. Bykov A.V., Miroshnikov S.A., Mezhueva L.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2009, 12: 77-80 (in Russ.).
  6. Miroshnikov S.A., Muslyumova D.M., Bykov A.V., Rakhmatullin Sh.G., Bykova L.A. Vestnik myasnogo skotovodstva, 2012, 3(77): 7-11 (in Russ.).
  7. Albert A. Selective toxicity the physico-chemical basis of therapy. London, NY, 1985. V. 2.
  8. Sizova E., Miroshnikov S., Yausheva E., Polyakova V. Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates. BioMed Research International, 2015, 2015: Article ID 243173 CrossRef
  9. Sizova E., Yausheva E., Miroshnikov S., Lebedev S., Duskaev G. Element status in rats at intramuscular injection of iron nanoparticles. Biosci. Biotechnol. Res. Asia, 2015, 12: 119-127 CrossRef
  10. Sizova E., Miroshnikov S., Yausheva E., Kosyan D. Comparative characteristic of toxicity of nanoparticles using the test of bacterial bioluminescence. Biosci. Biotechnol. Res. Asia, 2015, 12: 361-368 CrossRef
  11. Patel D., Kell A., Simard B., Deng J., Xiang B., Lin H.Y., Gruwel M., Tian G. Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials, 2010, 31(10): 2866-2873 CrossRef
  12. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 2008, 4: 707-716 CrossRef
  13. Bogoslovskaya O.A., Sizova E.A., Polyakova V.S., Miroshnikov S.A., Leipunskii I.O., Ol'khovskaya I.P., Glushchenko N.N. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2009, 2: 124-127 (in Russ.).
  14. Nikonov I.N., Folmanis Yu.G., Folmanis G.E., Kovalenko L.V., Lap-
    tev G.Yu., Egorov I.A., Fisinin V.I., Tananaev I.G. Doklady akademii nauk, 2011, 440(4): 565-569 (in Russ.).
  15. Miroshnikova E.P., Arinzhanov A., Kilyakova Y., Sizova E.A., Miroshnikov S.A. Antagonism metal alloy nanoparticles of iron and cobalt: impact on trace element metabolism in carp and chicken. Hum. Vet. Med., 2015, 7(4): 253-259.
  16. Zhigach A.N., Leipunskii I.O., Kuskov M.L., Stoenko N.I., Storozhev V.B. Pribory i tekhnika eksperimenta, 2000, 6: 122-127 (in Russ.).
  17. Fisinin V.I., Egorov I.A., Lenkova T.N., Okolelova T.M., Ignatova G.V., Shevyakov A.N., Egorova T.V., Andrianova E.N., Egorova T.A., Panin I.G., Grechishnikov V.V., Panin A.I., Sergachev P.A., Ryasnoi P.V., Afanas'ev V.A. Metodicheskie ukazaniya po optimizatsii retseptov kombikormov dlya sel'skokhozyaistvennoi ptitsy [Guidelines for the optimization of animal feed recipes for poultry. VNITIP]. Moscow, 2009 (in Russ.).
  18. Fisinin V.I., Egorov I.A., Okolelova T.M. Nauchnye osnovy kormleniya sel'skokhozyaistvennoi ptitsy [Scientific basis for poultry feeding]. Sergiev Posad, 2008 (in Russ.).
  19. Vishnyakov A.I., Ushakov A.S., Lebedev S.V. Vestnik myasnogo skotovodstva, 2011, 2(54): 96-102 (in Russ.).
  20. Hofmann E. Dinamicheskaya biokhimiya [Dynamic biochemistry=Dynamische Biochemie]. Moscow, 1971 (in Russ.).
  21. Torshkov A.A. Fundamental'nye issledovaniya, 2011, 9(3): 583-587 (in Russ.).
  22. Skal'nyi A.V., Rudakov I.A. Bioelementy v meditsine [Bioelements in medicine]. Moscow, 2004 (in Russ.).
  23. Cuillel M., Chevallet M., Charbonnier P., Fauquant C., Pignot-Paintrand I., Arnaud J., Cassio D., Michaud-Soret I., Mintz E. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale, 2014, 6(3): 1707-1715 CrossRef