doi: 10.15389/agrobiology.2016.6.921eng

UDC 639.2/.3:574.5:57.084.1:[546.28+546.28]-022.532

Supported by Russian Scienсe Foundation (project № 14-36-00023)

(ORCID: Sizova Е.А.



Е.P. Miroshnikova1, D.B. Kosyan1, 2, A.E. Arizhanov1, Е.А. Sizova1, 2,
V.V. Kalashnikov3

1Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia;
2All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail,;
3All-Russian Research Institute of Horse Breeding, Federal Agency of Scientific Organizations, pos. Divovo, Rybnovskii Region, Ryazan Province, 391105 Russia

Received May 25, 2016


A diversified use of nanomaterials leads to their accumulation in the environment and involvement into remediation. In water biocoenosis, nanomaterials influence fishes. Lipid peroxidation (LPO) in aquatic bioindicators is considered the parameters generally used to assess an impact of man-caused water pollution. It should be taken into account that the level of LPO products can be due not only to anthropogenic pollution, but also to the presence of peroxide substrates in fish tissues. We firstly showed the effect of silica and cerium nanoparticles in water environment with direct assay of the enzyme activity of the bioindiator used. Our purpose was to evaluate the prooxidant effects of CeO2 (15.8 nm) and SiO2 (40.9 nm) nanoparticles (NPs) on the Danio rerio model, to study LPO as influenced by the NPs doses, and to find out if there are any adaptive mechanisms in Danio rerio to withstand the NPs in the habitat. Complete death of the test objects occurred on days 80 and 84 when CeO2 NPs used. The first signs of the CeO2 NPs toxic effect at a dose of 10 mg/dm3 in the feed appeared on day 45, on day 56 the test-organism number was 33 % lower, and on day 65 a more than 54 % decline occurred. SiO2 NPs led to 33 % reduced survival. The presence of the nanoparticles in the habitat depressed the antioxidant system of Danio rerio but the signs of adaptation were manifested by the end of week 2, and a significant increase in catalase (CAT) and superoxide dismutase (SOD) activity proceeded by the end of the test. At 10 and 100 mg/dm3 of CeO2 NPs the malonic dialdehyde (MDA) level decreased by 11.0 % and 61.0 %, respectively. For SiO2 NPs the changes were similar with the MDA level decrease of 50.0 and 41.5 % at 10 and 100 mg/dm3 dosage, respectively. SOD activity when influenced by CeO2 NPs (10 mg/dm3 and 100 mg/dm3) decreased by 75 and 69 %, respectively, and for SiO2 NPs the indexes were 50 and 26 % lower as compared to control. Similar changes were characteristic of CAT activity. Thus, the investigated nanoparticles possess sufficient toxic properties that necessitates their further study.

Keywords: Danio rerio, survival, catalase, superoxide dismutase, nanoparticles of silicone and cerium dioxide, mass spectrometry.


Full article (Rus)



  1. Roco M.M. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J. Nanopart. Res., 2011, 13: 427-445 CrossRef
  2. Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res., 2013, 15: 1692 CrossRef
  3. Gerashchenko I.I. Mediko-biologicheskie aspekty poverkhnostnykh yavlenii, 2009, 1(16): 288-306 (in Russ.).
  4. Jackson P., Raun Jacobsen N., Baun A., Birkedal R., Kühnel D., Alstrup Jensen K., Vogel U., Wallin H. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem. Cent. J., 2013, 7(1): 154.
  5. Li Y., Li P., Yu H., Bian Y. Recent advances (2010-2015) in studies of cerium oxide nanoparticles’ health effects. Environ. Toxicol. Pharmacol., 2016, 9(44): 25-29 CrossRef
  6. Rundle A., Robertson A.B., Blay A.M., Butler K.M., Callaghan N.I., Dieni C.A., MacCormack T.J. Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonii. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2016, 181-182: 19-26 CrossRef
  7. Piccinetti C.C., Montis C., Bonini M., Laurà R., Guerrera M.C., Radaelli G., Vianello F., Santinelli V., Maradonna F., Nozzi V., Miccoli A., Olivotto I. Transfer of silica-coated magnetic (Fe3O4) nanoparticles through food: a molecular and morphological study in zebrafish. Zebrafish, 2014, 11(6): 567-579 CrossRef
  8. Ouyang Z., Mainali M.K., Sinha N., Strack G., Altundal Y., Hao Y., Winningham T.A., Sajo E., Celli J., Ngwa W. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI). Phys. Medica, 2016, 32(4): 631-635 CrossRef 
  9. Morimoto Y., Izumi H., Yoshiura Y., Tomonaga T., Oyabu T., Myojo T., Kawai K., Yatera K., Shimada M., Kubo M., Yamamoto K., Kitajima S., Kuroda E., Kawaguchi K., Sasaki T. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation. J. Nanopart. Res., 2015, 17(11): 442 CrossRef
  10. Dogra Y., Arkill K.P., Elgy C., Stolpe B., Lead J., Valsami-Jones E., Tyler C.R., Galloway T.S. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology, 2016, 10(4): 480-487 CrossRef
  11. OECD Guideline for Testing of Chemicals. Guideline 203. Fish, Acute Toxicity Test. Organization of Economic Cooperation Development, Paris, France, 1992.
  12. Ramesh R., Kavitha P., Kanipandian N., Arun S., Thirumurugan R., Subramanian P. Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environment Monitoring and Assessment, 2013, 185(7): 5873-5881 CrossRef
  13. Tarnuzzer R.W., Colon J., Patil S., Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett., 2005, 5(12): 2573-2577 CrossRef
  14. Schubert D., Dargusch R., Raitano J., Chan S.W. Cerium and yttrium oxide nanoparticles are neuroprotective. BBRC, 2006, 342(1): 86-91 CrossRef
  15. Park E.J., Choi J., Park Y.K., Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 2008, 245(1-2): 90-100 CrossRef
  16. Kim I.S., Baek M., Choi S.J. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol., 2010, 10(5): 3453-3458 CrossRef
  17. Das M., Patil S., Patil S., Bhargava N., Kang J.F., Riedel L.M., Seal S., Hickman J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials, 2007, 28(10): 1918-1925 CrossRef
  18. Srinivas A., Rao P.J., Selvam G., Murthy P.B., Reddy P.N. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol. Lett., 2011, 205(2): 105-115 CrossRef
  19. Rogers S., Rice K.M., Manne N.D., Shokuhfar T., He K., Selvaraj V., Blough E.R. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Medicine, 2015, 3: 2050312115575387 CrossRef
  20. Erogbogbo F., Yon K.-T., Roy I., Xu G., Prasad P.N., Swihart M.T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano, 2008, 2(5): 873-878 CrossRef
  21. Rajiv S., Jerobin J., Saranya V., Nainawat M., Sharma A., Makwana P., Gayathri C., Bharath L., Singh M., Kumar M., Mukherjee A., Chandrasekaran N. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum. Exp. Toxicol., 2016, 35(2): 170-183 CrossRef
  22. Nemmar A., Beegam S., Yuvaraju P., Yasin J., Shahin A., Ali B.H. Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress. Cell Physiol. Biochem., 2014, 34(2): 255-265 CrossRef 
  23. Stanca L., Petrache S.N., Radu M., Serban A.I., Munteanu M.C., Teodorescu D., Staicu A.C., Sima C., Costache M., Grigoriu C., Zarnescu O., Dinischiotu A. Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio. Fish Physiol. Biochem., 2012, 38: 963-975 CrossRef
  24. Serban A.I., Stanca L., Sima C., Staicu A.C., Zarnescu O., Dinischiotu A. Complex responses to Si quantum dots accumulation in carp liver tissue: Beyond oxidative stress. Chem-Biol. Interact., 2015, 239: 56-66 CrossRef
  25. Nemmar A., Albarwani S., Beegam S., Yuvaraju P., Yasin J., Attoub S., Ali B.H. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int. J. Nanomed., 2014, 9(1): 2779-2789 CrossRef
  26. Petrache S.N., Stanca L., Serban A.I., Sima C., Staicu A.C., Munteanu M.C., Costache M., Burlacu R., Zarnescu O., Dinischiotu A. Structural and oxidative changes in the kidney of crucian carp induced by silicon-based quantum dots. Int. J. Mol. Sci., 2012, 13(8): 10193-10211 CrossRef 
  27. Asagba S.O., Eriyamremu G.E., Igberaese M.E. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol. Biochem., 2008, 34: 61-69 CrossRef 
  28. Pirmohamed T., Dowding J.M., Singh S., Wasserman B., Heckert E., Karakoti A.S., King J.S., Seal S., Self W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Sommun., 2010, 46: 2736-2738 CrossRef 
  29. Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29: 2705-2709 CrossRef
  30. Ge W., Yan S., Wang J., Zhu L., Chen A., Wang J. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J. Agric. Food Chem., 2015, 63(6): 1856-1862 CrossRef 
  31. Xie G., Sun J., Zhong G., Shi L., Zhang D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol., 2010, 84: 183-190 CrossRef
  32. Miroshnikov S.A., Lebedev S.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2009, 6(112): 241-243.
  33. Arnold M.C., Badireddy A.R., Wiesner M.R., Di Giulio R.T., Meyer J.N. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch. Environ. Contam. Toxicol., 2013, 65(2): 224-233 CrossRef