doi: 10.15389/agrobiology.2016.6.883eng

UDC 636.52/.58:591.3:579.64

Supported by grant from Russian Science Foundation (project № 14-16-00140 «Modern views on the intestinal microflora of poultry in different diets: molecular genetic approaches»)



V.I. Fisinin1, G.Yu. Laptev2, I.N. Nikonov2, L.A. Il’ina2, E.A. Yildirim2,
V.A. Filippova2, N.I. Novikova2, A.A. Grozina1, T.A. Egorova1,
T.N. Lenkova1, V.A. Manukyan1, I.A. Egorov1

1All-Russian Research and Technological Poultry Institute, Federal Agency of Scientific Organizations,10, ul. Pti-tsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail;
2JSC «Biotrof», Kolpino, St. Petersburg, 192288 Russia, e-mail

Received September 13, 2016


Microorganisms which inhabit gut play great role in providing with nutrients, antibiotics, hormones and vitamins necessary for poultry health and performance. Therefore study of gut microbiome changes during ontogenesis seems to be essential. The structure of gut microflora in poultry embryos is of particular interest and debated because of very few publications on the problem. Despite embryo intestine is commonly considered sterile there are several reports on gut colonization by microorganisms in embryos during ontogenesis. Using T-RFLP (Terminal Restriction Fragment Length Polymorphism) analysis to generate a fingerprint of a microbial community we compared gut flora in chick embryos on days 6 and 17 to those in 26-day, 150-day and 300-day old Hisex White layers. Unlike accepted view, a high biodiversity was seen in embryo gut with Enterobacteriaceae (Escherichia coli mainly) predominated. Clostridia, Bacteroides, Negativicutes, Actinomycetales, Bifidocteriales were also found in contrast to earlier reports of their presence only in chicks at hatching and in adult poultry gut. Moreover, in the embryo gut we found the causal agents of dangerous animal disease, Burkholderia sp., Pseudomonas sp., Salmonella sp., Klebsiella sp.and Rickettsiales bacteria. Interestingly, the embryo gut biodiversity on day 6 was higher as compared to day 17 (75±2.75 phylotypes vs 30±1.20 phylotypes). In the layers aged 26, 150 and 300 days the diversity was much higher (over 175±8.12 phylotypes) as compared to embryos due to new members involved into gut bacterial community. Moreover, the poultry aged 300 days was lower both in the total diversity and in the percentage of unidentified microorganisms when compared to 26-day and 150-day old hens. In the adults, the predominating microbial taxa changed, in particular, Clostridia and Negativicutes became more abundantwhereas Bacillales and Bifidobacteriales weredepressed. Our findings indicate gut colonization by Lactobacilales and pathogenic Listeria sp., Pantoea sp., Enterobacter sp., Mycoplasma sp., Acinetobacter sp., Pasteurellaceae, Campylobacteraceae, Fusobacteria which occurred during ontogenesis. Thus the gut microbiome formation starts in embryo which is important for hatching and growing healthy poultry.

Keywords: gut microflora, caecum, ontogenesis, hens, embryo, T-RFLP.


Full article (Rus)

Full text (Eng)




  1. Timoshko M.A. Mikroflora pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh [Microflora of alimentary canal in farm animals]. Kishinev, 1990 (in Russ.).
  2. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Study of microflora in alimentary canal of farm animals — methods]. Moscow, 2006 (in Russ.).
  3. Salanitro J., Fairchilds I., Zgornicki Y. Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl. Microbiol., 1974, 27: 678-687.
  4. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 2014, 98: 4301-4309 CrossRef
  5. Mead G.C. Microbes of the avian cecum: types present and substrates utilized. J. Exp. Zool. Suppl., 1989, 3: 48-54.
  6. AmitRomach E., Sklan D., Uni Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Sci., 2004, 83: 1093-1098.
  7. Dibner J.J., Richards J.D., Knight C.D. Microbial imprinting in gut development and Health. J. Appl. Poultry Res., 2008, 17: 174-188 CrossRef
  8. Barnes E. The intestinal microbiota of poultry and game birds during life and after storage. J. Appl. Bacteriol., 1979, 46: 407-419.
  9. Mead G.C. Microbes of the avian cecum: types present and substrates utilized. J. Exp. Zool., 1989, 3: 48-54 CrossRef
  10. Torok V., Ophel-Keller K., Loo M., Hughes R. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl. Environ. Microbiol., 2008, 74(3): 783-791 CrossRef
  11. Park S.H., Lee S.I., Ricke S.C. Microbial populations in naked neck chicken ceca raised on pasture flock fed with commercial yeast cell wall prebiotics via an Illumina MiSeq Platform. PLoS ONE, 2016, 11(3): e0151944 CrossRef
  12. Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59: 143-169.
  13. Instruktsiya po sanitarno-mikrobiologicheskomu kontrolyu tushek, myasa ptitsy, ptitseproduktov, yaits i yaitseproduktov na ptitsevodcheskikh i pererabatyvayushchikh predpriyatiyakh [Instruction for the sanitary-microbiological control of poultry carcasses, meat, eggs and egg products in the poultry production and processing enterprises]. Moscow, 1990 (in Russ.).
  14. Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, 1982.
  15. van der Wielen P.W.J.J., Keuzenkamp D.A., Lipman L.J.A., van Kna-
    pen F., Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbiol. Ecol., 2002, 44: 286-293.
  16. Maiorka A., Dahlke F., de Azevedo Morgulis M.S.F. Broiler adaptation to post-hatching period. Ciencia Rural, 2006, 36: 701-708.
  17. Kizerwetter-Swida M., Binek M. Bacterial microflora of the chicken embryos and newly hatched chicken. J. Animal Feed Sci., 2008, 17: 224-232 CrossRef
  18. Babaca Z. Isolation of bacterial pathogens from dead in-shell chicken embryos from local hatcheries. J. Vet. Sci. Technol., 2014, 5: 170-171.
  19. Rossi D.A., Fonseca B.B., de Melo R.T., da Silva Felipe G., da Silva P.L., Mendonça E.P., Filgueiras A.L., Beletti M.E. Transmission of Campylobacter coli in chicken embryos. Brazil. J. Microbiol., 2012, 43(2): 535-543 CrossRef
  20. Nakphaichit M., Thanomwongwattana S., Phraephaisarn C., Sakamoto N., Keawsompong S., Nakayama J., Nitisinprasert S. The effect of including Lactobacillus reuteri KUB AC5 during post hatch feeding on the growth and ileum microbiota of broiler chickens. Poultry Sci., 2011, 12(90): 2753-2765 CrossRef
  21. Lowder B.V., Fitzgerald J.R. Human origin for avian pathogenic Staphylococcus aureus. Virulence, 2010, 4(1): 283-284 CrossRef
  22. Biberstein E.L., Hirsh D.C. Bordetella in veterinary microbiology. Reino Unido, Blackwell Sci., Oxford, 1999: 148-150.
  23. Gong J., Forster R.J., Yu H., Chambers J.R., Sabour P.M., Wheatcroft R., Chen S. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett., 2002, 208(1): 1-7 CrossRef
  24. Torok V.A., HugheszR.J., Mikkelsen L.L. Identification and characterization of potential performance-related gut microbiota in broiler chickens across various feeding trials. Appl. Environ. Microbiol., 2011, 77(17): 5868-5878 CrossRef
  25. Rinttila T., Apajalahti J. Intestinal microbiota and metabolites — implications for broiler chicken health and performance. J. Appl. Poultry Res., 2013, 22(3): 647-658 CrossRef