doi: 10.15389/agrobiology.2016.6.891eng

UDC 636.52/.58:636.084:579.64

Acknowledgements:
Supported by grant from Russian Science Foundation (project № 14-16-00140 «Modern views on the intestinal microflora of poultry in different diets: molecular genetic approaches»)

 

THE Saccharomyces sp. AND Bacillus subtilis BASED PROBIOTICS INFLUENCE ON CHICKEN BROILER PRODUCTIVITY AND CAECUM MICROBIOME COMMUNITY

T.A. Egorova1, T.N. Lenkova1, L.A. Il’ina2, E.A. Yildirim2,
I.N. Nikonov2, V.A. Filippova2, G.Yu. Laptev2, N.I. Novikova2,
A.A. Grozina
1, V.A. Manukyan1, V.I. Fisinin1, I.A. Egorov2

1All-Russian Research and Technological Poultry Institute, Federal Agency of Scientific Organizations,10, ul. Pti-tsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail olga@vnitip.ru;
2JSC «Biotrof», Kolpino, St. Petersburg, 192288 Russia, e-mail nikonov@biotrof.ru

Received September 26, 2016

 

Study of probiotic microorganisms which can produce enzymes and amino acids is important to develop biologicals to prevent disease and increase productivity in poultry. Lactbacillus sp. and Bifidobacterium sp. are widely used as probiotics due to their adhesive ability and antipathogenic activity. Bacillus sp. and yeasts Saccharomyces sp. are less examined but considered perspective as probiotic agents due to antibiotic activity and some other helpful features. Using T-RFLP (Terminal Restriction Fragment Length Polymorphism) and Real-Time PCR we compared number and composition of caecum microbiome in 37-day old Cobb 500 broiler chicken. In group I the chickens were fed with balanced combined fodder. In group II the chickens were fed with the same combined fodder supplemented with a probiotic which contained Saccharomyces sp. living cells, and in group III this probiotic was replaced by a probiotic product Cellobacterin-T. Chickens’ caecum microbiome contained various taxa including several unidentified phylotypes in addition to commonly found gut microorganisms. Phylum Firmcutes (mainly cellulolytic and amylolitic Clostridia) and Bacillus sp., Lactobacillus sp., Enterococcus sp. which possess anti-bacterial activity are identified as predominating taxa. In addition, various opportunistic and pathogenic microorganism were found including causative agents of respiratory diseases (Pasteurellaceae, Mycoplasma sp., etc.). Both probiotics resulted in an increase of total caecum microbiome and a decreased of its biodiversity. The most remarkable changes we found in the chickens fed with yeast probiotic. Caecum microbiome community of the broilers from group II showed the lowest Shannon index and Simpson index. Cellobacte-rin-T had the highest probiotic effect. In the broilers from group III the microbiome Bacillus sp. counts increased 1.38-fold, Lactobacillus sp. number was 1.47 times higher whereas the Campylobacter sp. number was 3.00 times lower and the family Enterobacteriaceae number was 1.44 times lower as compared to the control chicks. Yeast probiotic resulted in positive effect on cellulolytic Clostridia microorganisms but also led to rise of Campylobacter sp., Pasteurella sp.and Mycoplasma sp. counts. Poultry growth rate and productivity were influenced positively by both probiotics. The highest growth rate, weight gain, digestibility coefficient and vitamin A, E, B2 and carotinoid accumulation in liver were characteristic of the chickens from group III. Yeast probiotic promoted feed consumption. Chemical composition of pectoral and leg muscles of the chicks fed with probiotics remained unchanged.

Keywords: microflora, caecum, broiler chickens, bacterial community, T-RFLP, real time PCR, probiotic, Cellobacterin-T, yeast, productivity.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Czerwinski J., Hojberg O., Smulikowska S., Engberg R.M., Mieczkowska A. Influence of dietary peas and organic acids and probiotic supplementation on performance and caecal microbial ecology of broiler chickens. Brit. PoultrySci., 2010, 51(2): 258-569 CrossRef
  2. Malik N.I., Panin A.N. Veterinariya, 2001, 1: 27 (in Russ.).
  3. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 2014, 98: 4301-4309 CrossRef
  4. Rodriguez-Lecompte J.C., Yitbarek A., Brady J., Sharif S., Cavanagh M.D., Crow G., Guenter W., House J.D., Camelo-Jaimes G. The effect of microbial-nutrient interaction on the immune system of young chicks after early probiotic and organic acid administration. J. Anim. Sci., 2012, 90(7): 2246-2254 CrossRef
  5. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 2014, 98: 4301-4310 CrossRef
  6. Rehman H., Vahjen W., Awad W., Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr., 2007, 61: 319-335 CrossRef
  7. Urdaci M.C., Bressollier P., Pinchuk I. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol., 2004, 38: 86-90.
  8. Mazza P. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm., 1994, 133: 3-18.
  9. Hong H.A., Huang J.M., Khaneja R., Hiep L.V., Urdaci M.C., Cutting S.M. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol., 2008, 105: 510-520 CrossRef
  10. Mountzouris K.C., Dalaka E., Palamidi I., Paraskeuas V., Demey V., Theodoropoulos G., Fegeros K. Evaluation of yeast dietary supplementation in broilers challenged or not with Salmonella on growth performance, cecal microbiota composition and Salmonella in ceca, cloacae and carcass skin. Poultry Sci., 2015, 94(10): 2445-2455 CrossRef
  11. M'Sadeq S.A., Wu S.B., Choct M., Forder R., Swick R.A. Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers. Poultry Sci., 2015, 94(5): 898-905 CrossRef
  12. DeVries T.J., Chevaux E. Modification of the feeding behavior of dairy cows through live yeast supplementation. J. Dairy Sci., 2014, 97(10): 6499-6510 CrossRef
  13. Zhang Z., Cao L., Zhou Y., Wang S., Zhou L. Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae. BMC Microbiol., 2016, 28: 161-166 CrossRef
  14. Pizzolitto R.P., Armando M.R., Combina M., Cavaglieri L.R., Dalcero A.M., Salvano M.A. Evaluation of Saccharomyces cerevisiae strains as probiotic agent with aflatoxin B1 adsorption ability for use in poultry feedstuffs. J. Environ. Sci. Health. B, 2012, 47(10): 933-941 CrossRef
  15. Slizewska K., Piotrowska M. Reduction of ochratoxin A in chicken feed using probiotic. Ann. Agric. Environ. Med., 2014, 21(4): 676-680 CrossRef
  16. Amit-Romach E., Uni Z., Reifen R. Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol. Nutr. Food. Res., 2010, 54: 277-284 CrossRef
  17. Pagnini C., Saeed R., Bamias G., Arseneau K.O., Pizarro T.T., Cominelli F.,  Amit-Romach E., Uni Z., Reifen R. Probiotics promote gut health through stimulation of epithelial innate immunity. PNAS USA, 2010, 107: 454-459 CrossRef
  18. Rajput I.R., Hussain A., Li Y.L., Zhang X., Xu X., Long M.Y., You D.Y., Li W.F. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs mediated signaling to induce immunity by chicken BMDCs. J. Cell. Biochem., 2014, 115(1): 189-198 CrossRef
  19. Alizadeh M., Rogiewicz A., McMillan E., Rodriguez-Lecompte J.C., Patterson R., Slominski B.A. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on growth performance and local innate immune response of broiler chickens challenged with Clostridium perfringens. Avian Pathol., 2016, 45(3): 334-345 CrossRef
  20. Alizadeh M., Rodriguez-Lecompte J.C., Yitbarek A., Sharif S., Crow G., Slominski B.A. Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge. Poultry Sci., 2016, 95(10): 2266-2273 CrossRef
  21. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Study of microflora in alimentary canal of farm animals — methods]. Moscow, 2006 (in Russ.).
  22. Timoshko M.A. Mikroflora pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh [Microflora of alimentary canal in farm animals]. Kishinev, 1990 (in Russ.).
  23. Park S.H., Lee S.I., Ricke S.C. Microbial populations in naked neck chicken ceca raised on pasture flock fed with commercial yeast cell wall prebiotics via an Illumina MiSeq Platform. PLoS ONE, 11(3): e0151944 CrossRef
  24. Torok V.A., Hughes R.J., Mikkelsen L.L. Identification and characterization of potential performance-related gut microbiota in broiler chickens across various feeding trials. Appl. Environ. Microbiol., 2011, 77(17): 5868-5878 CrossRef
  25. Witzig M., Camarinha-Silva A., Green-Engert R., Hoelzle K., Zeller E., Seifert J., Hoelzle L.E., Rodehutscord M. Correction: spatial variation of the gut microbiota in broiler chickens as affected by dietary available phosphorus and assessed by T-RFLP analysis and 454 pyrosequencing. PLoS ONE, 2015, 10(12): e0145588 CrossRef
  26. de Boer P., Rahaoui H., Leer R.J., Montijn R.C., van der Vossen J.M. Real-time PCR detection of Campylobacter spp.: a comparison to classic culturing and enrichment. Food Microbiol., 2015, 51: 96-100 CrossRef
  27. Hold G.L., Schwiertz A., Aminov R.I., Blaut M., Flint H.J. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol., 2003, 69: 4320-4324.
  28. Bjerrum L., Engberg R.M., Leser T.D., Jensen B.B., Finster K., Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and cellular-based techniques. Poultry Sci., 2006, 85: 1151-1164.
  29. Metodika provedeniya nauchnykh i proizvodstvennykh issledovanii po kormleniyu sel'skokhozyaistvennoi ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika /Pod redaktsiei V.I. Fisinina [Poultry feeding: research and practical study. Molecular methods for the analysis of gut microflora. V.I. Fisinin (ed.)]. Sergiev Posad, 2013 (in Russ.).
  30. Instruktsiya po sanitarno-mikrobiologicheskomu kontrolyu tushek, myasa ptitsy, ptitseproduktov, yaits i yaitseproduktov na ptitsevodcheskikh i pererabatyvayushchikh predpriyatiyakh [Instruction for the sanitary-microbiological control of poultry carcasses, meat, eggs and egg products in the poultry production and processing enterprises]. Moscow, 1990 (in Russ.).
  31. Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, 1982.
  32. Gong J., Forster R.J., Yu H., Chambers J.R., Sabour P.M., Wheatcroft R., Chen S. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett., 2002, 208: 1-7 CrossRef
  33. Amit-Romach E., Sklan D., Uni Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Sci., 2004, 83: 1093-1098 CrossRef
  34. Rinttila T., Apajalahti J. Intestinal microbiota and metabolites — Implications for broiler chicken health and performance. J. Appl. Poultry Res., 2013, 22(3): 647-658 CrossRef
  35. Sanchez B., Arias S., Chaignepain S., Denayrolles M., Schmitter J.M., Bressollier P., Urdaci  M.C. Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin B. Microbiology, 2009, 155: 1708-1716 CrossRef
  36. Le Blay G., Blottiere H.M., Ferrier L., Le Foli E.C., Bonnet J.P., Galmiche C., Cherbut C. Shortchain fatty acids induce cytoskeletal and extracellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells. Dig. Dis. Sci., 2000, 45: 1623-1630.
  37. Yasuoka T., Tsujikawa Y. Fujiyama, Bamba T. Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population. Digestion, 2003, 67: 42-49.
  38. Niba A.T., Beal J.D., Kudi A.C., Brooks P.H. Bacterial fermentation in the gastrointestinal tract of non-ruminants: Influence of fermented feeds and fermentable carbohydrates. Trop. Anim. Health Prod., 2009, 41: 1393-1407 CrossRef
  39. Pryde S.E., Duncan S.H., Hold G.L., Stewart C.S., Flint H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett., 2002, 217: 133-139.
  40. Louis P., Young P., Holtrop G., Flint H.J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol., 2010, 12: 304-314 CrossRef
  41. Belenguer A., Duncan S.H., Holtrop G., Anderson S.E., Lobley G.E., Flint H.J. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl. Environ. Microbiol., 2007, 73: 6526-6533.
  42. Harmsen H.J.M., Raangs G.C., He T., Degener J.E., Welling G.W. Extensive set of 16S rRNAbased probes for detection of bacteria in human feces. Appl. Environ. Microbiol., 2002, 68: 2982-2990.
  43. Swiqtkiewicz S., Arczewska-Wlosek, Jozetiak D. Immunomodulatory efficacy of yeast cell products in poultry: a current review. World’s Poultry Science Journal, 2014, 70(1): 57-68.
  44. Birgit K. Hefen in der Nutztierfutterung. Feed Mag., 2015, 98(1-2): 17-21.
  45. Fanelli A., Agazzi A., Alborali G.L., Pilotto A., Pilotto A., Bontempo V., Dell’Orto V., Demey V., Caputo J.M., Savoini G. Prevalence reduction of pathogens in poultry fed with Saccharomyces cerevisiae. Biotechnol. Agron. Soc. Environ., 2015, 19(1): 3-10.

back