doi: 10.15389/agrobiology.2016.6.875eng

UDC 619+61]:615.284:615.45:616-098

Acknowledgements:
Supported by Russian Science Foundation, grant № 15-16-00019

 

DERIVATIVES OF 16-MEMBERED MACROCYCLIC LACTONES: ANTIPARASITIC PROPERTIES AND INTERACTION WITH GABAA RECEPTORS

M.Kh. Dzhafarov1, F.I. Vasilevich1, G.I. Kovalev1, 2, K.S. Krivonos1,
I.I. Tsepilova1, I.V. Zavarzin3, E.V. Vasil’eva2

1Moscow State Academy of Veterinary Medicine and Biotechnology—K.I. Skryabin Moscow Veterinary Academy, 23, ul. Akademika Skryabina, Moscow, 109472 Russia,
e-mail mxd123@mail.ru;
2V.V. Zakusov Research Institute of Pharmacology, Federal Agency of Scientific Organizations, 8, ul. Baltiiskaya, Moscow, 125315 Russia, e-mail kovalev@academpharm.ru;
3N.D. Zelinsky Institute of Organic Chemistry, Federal Agency of Scientific Organizations, 47, Leninskii prosp., 119991 Russia, e-mail zavi@ioc.ac.ru

Received June 8, 2016

 

Searching for antiparasitics with a different mode of action than existing drugs, and (or) with the same but much more effective mechanisms is necessary to periodically update the applicable protection chemicals. For the first time we here present data on the biocidal action of new semisynthetic derivatives of avermectin B1 that we have synthetized earlier. These are the 16-membered macrocyclic lactones, the representatives of an important class of anthelmintics. In 2015 S. Omura (Japan) and W. Campbell (USA) who discovered this avermectin group, were awarded the Nobel Prize in physiology and medicine. In our study the oligochaetes Tubificidal tubifex were used as a test-object. The original chemicals and synthetized derivatives tested were avermectin B1 (abamectin), ivermectin, monosaccharide analogues of abamectin and ivermectin, namely abamectin, ivermectin, 5-O-succinyl avermectin B1, methyl ester of 5-O-succinyl avermectin B1, ethyl ester of 5-O-succinyl avermectin B1, diethyl ester of 5,4''-di-O-succinyl avermectin B1, ethyl ester of 5-O-malonyl avermectin B1, diethyl ester of 5,4''-di-O-dimalonyl avermectin B1, monosaccharide hemisuccinate of avermectin B1 (5-O-succinyl-4'-dezoleandrozyl-4'-hydroxyavermectin B1), ethyl ester of 5-O-succinyl-4-O-chloroacetyl avermectin B1, 5-O-succinyl ivermectin, ethyl ester of 5-O-suc-cinoyl ivermectin, 5,4''-di-O-succinyl ivermectin, diethyl ester of 5,4''-di-O-succinyl-ivermectin, ethyl ester of 5-O-malonylivermectin, diethyl ester of 5,4''-di-O-dimalonyl ivermectin, monoavermectin-5-yl ester of 4-[2-(4-nitrophenyl)-2-oxoethoxy]-4-oxobutanoic acid, monoavermectin-5-yl ester of 4-[2-(4-chlorophenyl)-2-oxoethoxy]-4-oxobutanoic acid, monoavermectin-5-yl ester of 4-[(4-nit-rophenyl)-methoxy]-butanoic acid, monoavermectin-5-yl ester of 4-[1-methyl-2-(4-methylphenyl)-2-oxoethoxy]-4-oxobutanoic acid, monoavermectin-5-yl ester of 4-[2-(4-chlorophenyl)-1-methyl-2-oxoethoxy]-4-oxobutanoic acid, monoavermectin-5-yl ester of 4-[3-chloro-1-(4-сhlorbenzoil)-pro-poxy]-4-oxobutanoic acid, monoavermectin-5-yl ester of 4-{2-[(4-methylphenyl)-amino]-2-oxoeth-oxy}-4-oxobutanoic acid and monoavermectin-5-yl ester of 4-{2-[(4-bromophenyl)-amino]-2-oxo-ethoxy}-4-oxobutanoic acid. The acute toxicity (LD50) of the most effective ones, 5-O-succinyl avermectin B1, 5-O-ethylsuccinyl avermectin B1 and 5,4''-di-О-ethylsuccinyl avermectin B1, for intraperitoneally challenged white mice was 37.85; 41.37 and 45.82 mg/kg, respectively. We also used membrane preparations of rat brain as in vitro model for screening and studying activity of natural and semi-synthetic avermectins. A radioligand [G-3H]SR 95531 binding assay of avermectin B1, ivermectin, and 5-O-succinyl avermectin B1 interaction with GABA-receptors (the biotargets for these compounds) showed a 30 % increase of maximal inhibition (Imax) of specific binding by hemisuccinate derivative of avermectin B1 when compared to original avermectin B1.

Keywords: 16-membered macrocyclic lactones, avermectins, avermectin monosaccharides, 5-O-succinyl avermectin B1, 5-O-ethylsuccinyl avermectin B1, 5,4''-di-O-ethylsuccinyl avermectin B1, antiparasitics, oligochaeta Tubifex tubifex, GABAA-receptor, radioligand binding assay.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Arkhipov I.A. Antigel'mintiki: farmakologiya i primenenie [Anthelmintics: pharmacology and use]. Moscow, 2009 (ISBN 978-5-85941-305-8) (in Russ.).
  2. Dzhafarov M.Kh. Evolution in chemotherapy of human and animal helminthiases (review). Agricultural Biology, 2013, 4: 26-44 CrossRef (in Engl.).
  3. Nobelforsamlingen. The Nobel Assembly at Karolinska Institutet. The 2015 Nobel Prize in Physiology or Medicine. Available http://www.nobelprize.org/nobel_prizes/medi-cine/laurea-tes/2015/press.pdf. No date.
  4. Campbell W.C. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr. Pharm. Biotechnol., 2012, 13(6): 853-865 CrossRef
  5. Omura S. Ivermectin: 25 years and still going strong. Int. J. Antimicrob. Agents, 2008, 31: 91-98 CrossRef
  6. Pitterna T., Cassayre J., Huter O., Jung P.M., Maienfisch P., Kessa-
    bi F.M., Quaranta L., Tobler H. New ventures in the chemistry of avermectins. Bioorg. Med. Chem., 2009, 17: 4085-4095 CrossRef
  7. Dzhafarov M.Kh., Mirzaev M.N., Urazaev D.N., Maksimov V.I. Antiparasitic activity of adermectin and compounds of a steroid nature. Russian Agricultural Sciences, 2010, 36(2): 130-132 CrossRef
  8. Dzhafarov M.Kh., Myrzaev M.N., Zavarsin I.V. Antiparasitic activity of famectin and some compounds of different chemical nature. Agricultural Biology, 2011, 2: 108-111. Available http://www.agrobiology.ru/2-2011dzhafarov-eng.html. No date (in Eng.).
  9. Raymond V., Sattelle D.B. Novel animal-health drug targets from ligand-gated chloride channels. Nat. Rev. Drug Discov., 2002, 1: 427-436 CrossRef
  10. Estrada-Mondragon A., Lynch J.W. Functional characterization of ivermectin binding sites in α1β2γ2LGABA(A) receptors. Front. Mol. Neurosci., 2015, 8: 55 CrossRef
  11. Wolstenholme A.J., Rogers A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology, 2005, 131: S85-S95 CrossRef
  12. Lynagh T., Lynch J.W. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front. Mol. Neurosci., 2012, 5: 60 CrossRef
  13. Yoluk Ö., Brömstrup T., Bertaccini E.J., Trudell J.R., Lindahl E. Stabilization of the GluCl ligand-gated ion channel in the presence and absence of ivermectin. Biophys. J., 2013, 105: 640-647 CrossRef
  14. Pang S., Qi S.,  Ran Z., Song X., Li X., Wang C., Duan L. Synergistic effect of gamma-aminobutyric acid with avermectin on Bombyx mori. J. Food Agric. Environ., 2013, 11(1): 1022-1024.
  15. Cobb R., Boeckh A. Moxidectin: a review of chemistry, pharmacokinetics and use in horses. Parasites Vectors, 2009, 2(Suppl 2): S5 CrossRef
  16. Prichard R., Ménez C., Lespine A. Moxidectin and the avermectins: Consanguinity but not identity. International Journal of Parasitology: Drugs and Drug Resistance, 2012, 2: 134-153 CrossRef
  17. Menez C., Sutra J.-F., Prichard R., Lespine A. Relative neurotoxicity of ivermectin and moxidectin in Mdr1ab (2/2) mice and effects on mammalian GABA(A) channel activity. PLOS, 2012, 6(11): e1883 CrossRef
  18. Lankas G.R., Gordon L.R. Toxicology. In: Ivermectin and avermectin. W.C. Campbell (ed.). Springer-Verlag, NY, 1989: 89-112.
  19. Chernoburova E.I., Lishchuk V.A., Ovchinnikov K.L., Kolobov A.V., Dzhafarov M.Kh., Vasilevich F.I., Zavarzin I.V. Izvestiya RAN. Seriya khimicheskaya, 2016, 12: 2965-2969 (in Russ.).
  20. Mironov A.N., Bunyatyan N.D., Vasil'ev A.N., Verstakova O.L., Zhuravleva M.V., Lepakhin V.K., Korobov N.V., Merkulov V.A., Orekhov S.N.,  Sakaeva I.V., Uteshev D.B., Yavorskii A.N. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast' I [Preclinical studies of drugs — guidelines. Part I]. Moscow, 2012: 13-25 (in Russ.).
  21. Hawkinson J.E., Acosta-Burruel M., Kimbrough C.L., Goodnough D.B., Wood P.L. Steroid inhibition of [3H]SR 95531 binding to the GABAA recognition site. Eur. J. Pharmacol., 1996, 304: 141-146 CrossRef
  22. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193: 265-275.
  23. Schuske K., Beg A.A., Jorgensen E.M. The GABA nervous system in C. elegans. Trends Neurosci., 2004, 27: 407-414 CrossRef
  24. Wolstenholme A.J. Surviving in a toxic world. Science, 2012, 335: 545-546 CrossRef
  25. Maksay G. Differential effects of thiocyanate on the binding thermodynamics of bicuculline methiodide versus SR95531 (Gabazine) to the g-aminobutyric acid receptor-ionophore complex. Biochem. Pharmacol., 1998, 56: 729-731 CrossRef
  26. Duittoz A.H., Martin R.J. Effects of the arylaminopyridazine-GABA derivatives, SR95103 and SR95531 on the Ascaris muscle GABA receptor: the relative potency of the antagonists in the Ascaris is different to that at vertebrate GABAa receptors. Comp. Biochem. Physiol., 1991, 98C: 417-422 CrossRef
  27. Nakao T., Banba Sh., Hirase K. Comparison between the modes of action of novel meta-diamide and macrocyclic lactone insecticides on the RDL GABA receptor. Pestic. Biochem. Phys., 2015, 120: 101-108 CrossRef

back