doi: 10.15389/agrobiology.2016.6.801eng

UDC 636.32/.38:575.174.015.3:577.2.08:51-76

We thank Dr R.V. Ivanov (Yakut Research Institute of Agriculture) for
assistance in collecting samples.
Supported by Russian Science Foundation (project № 14-36-00039)



T.E. Deniskova1, M.I. Selionova2, E.A. Gladyr’1, A.V. Dotsev1,
G.T. Bobryshova2, O.V. Kostyunina1, G. Brem3, N.A. Zinovieva1

1L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail;
2All-Russian Research Institute of Sheep and Goat Breeding, Federal Agency of Scientific Organizations, 15, per. Zootechnicheskii, Stavropol, 355017 Russia;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail

Received September 26, 2016


At the current stage of biological development is impossible to establish conservation programs and to monitor genetic resources of sheep without a preliminary study by DNA markers. The Russian sheep breeding is represented by wide variety of breeds, including all productivity and wool types. However, until recently only some sheep breeds, which belong to the same breeding zone or productivity type, were investigated by DNA markers including microsatellites. We studied 25 Russian sheep breeds (n = 751), including fine-fleeced — Dagestan Mountain (DAG), Grozny (GRZ), Kulunda (KUL), Manych Merino (MNM), Salskaya (SAL), Stavropol (STA), Soviet Merino (SVM), Volgograd (VOL), Baikal’s fine-fleeced (ZBL); semi fine-fleeced — Altay Mountain (ALT), Kuibyshev (KUI), North Caucasian (NC), Russian long-haired (RLH),  Tsigai (TSIG); coarse-wooled — Andean (AND), Buubey (BUB), Edilbai (EDL), Karachaev (KAR), Kuchugur (KCH), Kalmyk (KLM), Karakul (KRK), Lezgin (LEZ), Romanov (ROM),  Tushin (TSH), Tuvan short fat-tailed (TUV). The research was conducted using 11 microsatellite loci (OarCP49, INRA063, HSC, OarAE129, MAF214, OarFCB11, INRA005, SPS113, INRA23, MAF65 и McM527). The data were processed using GenAIEx 6.5 and PAST software. In general, the studied breeds were characterized by moderately high allelic diversity. The average number of alleles per locus is varied from 7.20±0.98 in KUL and 10.30±0.99 in TSIG. The values of Na≥10.0 were found in TSIG, TUV, BUB and KRK, values of Na≤8.0 were identified in KUL, RLH and SVM. The effective allele number was the highest in the KRK and TUV (Ne≥5.7) and the minimum was detected in KCH, ALT, RLH and NC (Ne≤4.3). The level of the observed heterozygosity in 21 of the 25 studied breeds ranged from 0.489±0.095 in TUV to 0.651±0.050 in ROM and 0.651±0.060 in SVM, and four other breeds (BUB, TSIG, ZBL and TUV) it varied from 0.798±0.023 in BUB up 0.977±0.017 in TUV. There was a substantial deficit of heterozygotes in 21 of the 25 studied breeds (FIS values ranged from 0.13 in ROM to 0.36 in KAR and SAL), in the other four (BUB, TSIG, ZBL and TUV) an excess of heterozygotes (FIS values ranged from -0.04 to -0.22) was detected. The analysis of molecular variance (AMOVA) showed that 5.02 % of genetic variation is composed of differences among breeds and 94.98 % is explained by within breeds’ component. Analysis of the structure of the UMPGA phylogenetic tree, based on the matrix of pairwise genetic distances by M. Nei (1972), showed that the nature of the identified relationships is mainly related with the wool type, productivity type and breeding region. Thus, the identified polymorphism of eleven microsatellite loci is quite powerful for differentiating sheep of various breeds. For a better understanding population structure and obtaining new information on the genetic diversity at the genomic level the application of DNA microarrays, based on the multiple SNPs-markers, is required.

Keywords: sheep breeds, microsatellites, genetic diversity.


Full article (Rus)

Full text (Eng)



  1. Crispim B., Seno L., Egito A., Vargas Junior F., Grisolia A. Application of microsatellite markers for breeding and genetic conservation of herds of Pantaneiro sheep. Electronic Journal of Biotechnology, 2014, 17: 317-321 CrossRef
  2. Stolpovskii Yu.A. Concept and principles of genetic monitoring for the purpose of preservation in situ of domestic animals kinds. Agricultural Biology, 2010, 6: 3-8. Available No date (in Engl.).
  3. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acids Res., 1984, 12: 4127-4138.
  4. Litt M., Luty J.M. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet., 1989, 44: 397-401.
  5. Putman A.I., Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and Evolution, 2014, 4(22): 4399-4428 CrossRef
  6. Dalvit C., Sacca E., Cassandro M., Gervaso M., Pastore E., Piasentier E. Genetic diversity and variability in Alpine sheep breeds. Small Ruminant Res., 2008, 80: 45-51 CrossRef
  7. Kusza S., Dimov D., Nagy I., Bõsze Z., Jávor A., Kukovics S. Microsatellite analysis to estimate genetic relationships among five bulgarian sheep breeds. Genet. Mol. Biol., 2010, 33(1): 51-56 CrossRef
  8. Ferrando A., Goyache F., Parés P.-M., Carrión C., Miró J., Jordana J. Genetic relationships between six eastern Pyrenean sheep breeds assessed using microsatellites. Spanish Journal of Agricultural Research, 2014, 12(4): 1029-1037 CrossRef
  9. Yilmaz O. Power of different microsatellite panels for paternity analysis in sheep. Animal Science Papers and Reports, 2016, 34(2): 155-164.
  10. Baumung R., Cubric-Curik V., Schwend K., Achmann R., Sölkner J. Genetic characterization and breed assignment in Austrian sheep breeds using microsatellite marker information. J. Anim. Breed. Genet., 2006, 123: 265-271 CrossRef
  11. Tapio I., Tapio M., Grislis Z., Holm L-E., Jeppsson S., Kantanen J., Miceikiene I., Olsaker I., Viinalass H., Eythorsdottir E. Unfolding of population structure in Baltic sheep breeds using microsatellite analysis. Heredity, 2005, 94: 448-456 CrossRef
  12. Neubauer V., Vogl C., Seregi J., Sáfár L., Brem G. Genetic diversity and population structure of Zackel sheep and other Hungarian sheep breeds. Archives Animal Breeding, 2015, 58: 343-350 CrossRef
  13. Pariset L., Savarese M.C., Cappuccio I., Valentini A. Use of microsatellites for genetic variation and inbreeding analysis in Sarda sheep flocks of central Italy. J. Anim. Breed. Genet., 2003, 120(6): 425-432 CrossRef
  14. Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan J., Dalrymple B. Genome wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS ONE, 2012, 10: e1001258 CrossRef
  15. Heaton M.P., Leymaster K.A., Kalbfleisch T.S., Kijas J.W., Clarke S.M., McEwan J., Maddox J.F., Basnayake V., Petrik D.T., Simpson B., Smith T.P.L., Chitko-McKown C.G., the International Sheep Genomics Consortium. SNPs for parentage testing and traceability in globally diverse breeds of sheep. PLoS ONE, 2014, 9(4): e94851 CrossRef
  16. Clarke S.M., Henry H.M., Dodds K.G., Jowett T.W.D., Manley T.R., Anderson R.M., McEwan J.C. A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep. PLoS ONE, 2014, 9(4): e93392 CrossRef
  17. Deniskova T.E., Sermyagin A.A., Bagirov V.A., Okhlopkov I.M., Gladyr E.A., Ivanov R.V., Brem G., Zinovieva N.A. Comparative analysis of the effectiveness of STR and SNP markers for intraspecific and interspecific differentiation of the genus Ovis. Russian Journal of Genetics, 2016, 52(1): 79-84 CrossRef
  18. Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. A Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6(5): e19379 CrossRef
  19. Ernst L.K., Zinov'eva N.A. Biologicheskie problemy zhivotnovodstva v XXI veke [Biological aspects of animal husbandry in the XXI century]. Moscow, 2008 (in Russ.).
  20. Amerkhanov Kh.A. Ovtsevodstvo i kozovodstvo Rossiiskoi Federatsii v tsifrakh [Goats and sheep breeding in Russia: statistics]. Stavropol', 2015 (in Russ.).
  21. Gladyr' E.A., Zinov'eva N.A., Burylova S.S., Selionova M.I., Moiseikina L.G., Ernst L.K., Brem G. Dostizheniya nauki i tekhniki APK, 2012, 11: 34-37 (in Russ.).
  22. Zinovieva N.A., Selionova M.I., Gladyr E.A., Petrovic M.P., Caro Petrovic V., Ruzic Muslic D., Petrovic M.M. Investigation of gene pool and genealogical links between sheep breeds of southern Russia by blood groups and DNA microsatellites. Genetika, 2015, 47(2): 395-404 CrossRef
  23. Deniskova T.E., Kaneva L.A., Gladyr' E.A., Selionova M.I., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK, 2016, 30(8): 75-78 (in Russ.).   
  24. Tapio M., Ozerov M., Tapio I., Kantanen J., Toro M.A., Marzanov N., Cinkulov M., Goncharenko G., Kiselyova T., Murawski M. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia. BMC Genetics, 2010, 11: 76 CrossRef
  25. Ozerov M.Yu., Tapio M., Kantanen Yu., Marzanova S.N., Buzerov V.V., Andryukhin A.P., Sharlapaev B.N., Petrov S.N., Marzanov N.S. Problemy biologii produktivnykh zhivotnykh, 2013, 3: 16-24 (in Russ.).
  26. Zinov'eva N.A., Popov A.N., Ernst L.K., Marzanov N.S., Bochkarev V.V., Strekozov N.I., Brem G. Metodicheskie rekomendatsii po ispol'zovaniyu metoda polimeraznoi tsepnoi reaktsii v zhivotnovodstve [PCR analysis in animal husbandry — guidelines]. Dubrovitsy, 1998 (in Russ.).
  27. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, 28(19): 2537-2539 CrossRef
  28. Weir B.S., Cockerham C.C. Estimating F-Statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  29. Nei M. Genetic distance between populations. Am. Nat., 1972, 106(949): 283-292 CrossRef
  30. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, 4(1): 4-9.
  31. Hartl D.L., Clark A.G. Principles of population genetics. Sunderland, United Kingdom, 1997.
  32. Moroz V.A. Ovtsy, kozy, sherstyanoe delo, 2015, 2: 45-48 (in Russ.).
  33. Sel'kin I.I., Sokolov A.N. Ovtsy, kozy, sherstyanoe delo, 2002, 3: 10-12 (in Russ.).
  34. Medvedev M.V., Erokhin A.I. Ovtsy, kozy, sherstyanoe delo, 2004, 1: 29-30 (in Russ.).
  35. Sel'kin I.I. Severokavkazskaya myasosherstnaya poroda [A dual-purpose North Caucasian meat and wool sheep breed]. Stavropol, 2007 (in Russ.).
  36. Erokhin A.I., Kotarev V.I., Erokhin S.A. Ovtsevodstvo [Sheep breeding]. Voronezh, 2014 (in Russ.).
  37. Gadzhiev Z.K. Grubosherstnye ovtsy Dagestana [Dagestan coarse-wool sheep]. Makhachkala, 2010 (in Russ.).
  38. Murzina T.V., Vershinina V.A. Informatsionnyi byulleten', 2016, 1(11): 35-41 (in Russ.).
  39. Biltuev S.I. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Znachenie i perspektivy razvitiya ovtsevodstva v Agrarnoi ekonomike Sibiri i Dal'nego Vostoka» [Proc. Int. Conf. «The value and prospects of sheep farming in the economy of Siberia and the Far East»]. Chita, 2016: 52-57 (in Russ.).
  40. Stolpovskii Yu. A., Shimiit L.V., Kol N.V., Evsyukov A.N., Rusina M.N., Churgui-ool O.I., Sulimova G.E. Analysis of genetic variability and phylogenetic relations i npopulations of Tuvinian short-fat-tailed sheep with ISSR-markers usage. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2009, 6: 34-43 (in Russ.).