doi: 10.15389/agrobiology.2016.6.867eng

UDC 636.2:637.12.04/.07:579.62:[579.861.2+615.33

Acknowledgements:
Supported by Russian Science Foundation (project No 15-16-00020)

 

ANTIBIOTIC-RESISTANCE PROFILE OF Staphylococcus aureus STRAINS ISOLATED FROM MILK OF HIGH YIELD COWS IN CENTRAL RUSSIA

O.A. Artem’eva, D.A. Nikanova, E.N. Kotkovskaya, E.A. Gladyr’,
A.V. Dotsev, N.A. Zinovieva

L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail vijmikrob@mail.ru, DAP2189@gmail.com, asnd@mail.ru, elenagladyr@mail.ru, n_zinovieva@mail.ru

Received September 9, 2016

 

The development of microbial resistance to antibiotics determines the effectiveness of the veterinary measures. The study and monitoring, well-designed treatment schemes are those measures that help to reduce the risk of spread of pathogenic and conditional-pathogenic microorganisms. One of the problems in the dairy farming is mastitis of high producing cows which is mainly caused by Staphylococcus aureus. Here we first report findings on the development of resistance in S. aureus strains isolated from milk of clinically healthy dairy cows during treatment with antibiotics of different classes. The study was carried out using high yield holsteinized black-and-white cows (n = 1321, Kaluga region, 2016) which were vaccinated twice with anti-mastitis drug Mastivak («Ovejero», Spain). Milk was sampled during the lactation period individually from each cow. For the species identification of S. aureus isolates we used the following criteria: (i) morphology and microscopy of the colonies grown on the Baird Parker Agar medium («HiMedia Laboratories Pvt., Ltd», India); (ii) the presence of hemolysis zones on the Azide Blood Agar Pronadisa medium («Conda», Spain) supplemented with 5 % defibrinated sheep blood; (iii) a coagulation of dry citrated rabbit plasma (CJSC «EKOlab», Russia); (iv) biochemical characterization with API 20 Staph panel («BioMerieux», France). S. aureus ATCC 25923 was a reference strain. The sensitivity of the isolated microorganisms to ten antibiotics («Pharmacotherapy Research Center», Russia) including penicillin (PEN, 10, ED), oxacillin (OX, 10 μg), gentamicin (GN, 10 μg), erythromycin (ER, 15 μg), lincomycin (LN, 15 μg), rifampicin (RF, 5 μg), ciprofloxacin (CP, 5 μg), vancomycin (VA, 30 μg), fuzidin (FZ, 10 μg) and novobiocin (NB, 5 μg) was determined by disk diffusion method. A total of 104 strains among 155 isolates (67.1 %) showed resistance to one or more antibiotics. The majority of the strains were resistant to novobiocin (49.7 %) while the smallest part (2.6 %) exhibited resistant to vancomycin. Importantly, the antibiotic resistance to next-generation antibacterial agents (novobiocin and vancomycin) which are currently widely used in medicine should be noted. Gentamicin, rifampicin and vancomycin had the highest efficiency among the tested antibiotics (81.9 %, 86.5 % and 97.4 %, respectively). In order to evaluated the effectiveness of antibiotic treatment strategy, the cows (n = 87) with pre-detected S. aureus were divided into four groups. Gentamicin was administrated in group I (n = 26), erythromycin was administrated in group II (n = 22), rifampicin was administrated in group III (n = 12), and penicillin and amoxicillin were administrated in group IV (n = 27). The animals were considered cured when no S. aureus after the treatment. Rifampicin application was the most effective (91.7 %) whereas gentamicin showed the lowest effectiveness (53.8 %). Moreover, the number of multidrug resistant strains reached 55.6-61.5 % after the treatment comparing to 33.3-43.8 % before treatment, thus a tendency of developing multiple drug resistance has been shown.

Keywords: high-yield dairy cows, Staphylococcus aureus, antibiotic resistance, mastitis, antibiotics.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Tanzin T., Nazir K.H.M.N.H., Zahan M.N., Parvej M.S., Zesmin K., Rahman M.T. Antibiotic resistance profile of bacteria isolated from raw milk samples of cattle and buffaloes. Journal of Advanced Veterinary and Animal Research, 2016, 3(1): 62-67 CrossRef
  2. Shchepetkina S.V. Sel'skokhozyaistvennye vesti, 2016, 2: 55-57 (in Russ.).
  3. Thaker H.C., Brahmbhatt M.N., Nayak J.B. Isolation and identification of Staphylococcus aureus from milk and milk products and their drug resistance patterns in Anand, Gujarat. Veterinary World, 2013, 6(1): 10-13 CrossRef
  4. Anueyiagu K.N., Isiyaku A.W. Isolation, identification of Staphylococcus aureus from bovine milk and its antibiotics susceptibility. International Journal of Livestock Production, 2015, 6(6): 74-77 CrossRef
  5. Lysenko V.A., Orlova E.V., Litvinova T.I., Babich M.V. Byulleten' fiziologii i patologii dykhaniya, 2004, 18: 17-20 (in Russ.).
  6. Talukder A.A., Rahman H.H., Jamil Mahmud S.M., Alam F., Dey S.K. Isolation, identification and resistance pattern of microorganisms associated with mastitis in Buffalo. J. Microbiol., 2013, 30(1-2): 1-5.
  7. Sayed R.H., Salama S.S., Soliman R.T.  Bacteriological evaluation of present situation of mastitis in dairy cows. Global Veterinaria, 2014, 13(5): 690-695.
  8. Hussain R., Javed M.T., Khan A., Muhammad G. Risks factors associated with subclinical mastitis in water buffaloes in Pakistan. Trop. Anim. Health Prod., 2013, 45: 1723-1729 CrossRef
  9. Srinivasan P., Jagadeswaran D., Manoharan R., Giri T., Balasubramaniam G.A., Balachandran P. Prevalence and etiology of subclinical mastitis among buffaloes in Namakkal, India. Pakistan J. Biol. Sci., 2013, 16: 1776-1780.
  10. Kryukov N.I. Effektivnoe zhivotnovodstvo, 2016, 2(123): 22-24 (in Russ.).
  11. Modin A.N., Klimov N.T., Efanova L.I. Zootekhniya, 2010, 10: 27-28 (in Russ.).
  12. Abeer A.M., Zakia A.M., Muna E.A., Sabiell Y.A. Bacteriological and pathological studies of mammary glands affections in camels (Camelus dromedarius) at Tumbool Abattoir, Sudan. British Microbiology Research Journal, 2016, 15(5): 1-8 CrossRef
  13. Ashfaq M., Razzaq A., Shamsheer-ul-Haq, Muhammad G. Economic analysis of dairy animal diseases in Punjab: a case study of Faisalabad district. J. Anim. Plant Sci., 2015, 25(5): 1482-1495.
  14. Singh D., Kumar S., Singh B., Bardhan D. Economic losses due to important diseases of bovines in central India. Veterinary World, 2014, 7(8): 579-585 CrossRef
  15. Rola J.G., Czubkowska A., Korpysa-Dzirba W., Osek J. Occurrence of Staphylococcus aureus on farms with small scale production of raw milk cheeses in Poland. Toxins, 2016, 8(3): 62 CrossRef
  16. Hennekinne J.A., de Buyser M.L., Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev., 2012, 36: 815-836 CrossRef
  17. Rola J.G., Korpysa-Dzirba W., Osek J. Prevalence of Staphylococcus aureus and staphylococcal enterotoxins at different stages of production of raw milk cheeses — preliminary results. Bulletin of the Veterinary Institute in Pulawy, 2013, 57: 341-345 CrossRef
  18. Bianchi D.M., Gallina S., Bellio A., Chiesa F., Civera T., Decastelli L. Enterotoxin gene profiles of Staphylococcus aureus isolated from milk and dairy products in Italy. Lett. Appl. Microbiol, 2014, 58: 190-196 CrossRef
  19. Tassew A., Negash M., Demeke A., Feleke A., Tesfaye B., Sisay T. Isolation, identification and drug resistance patterns of methicillin resistant Staphylococcus aureus from mastitis cow’s milk from selected dairy farms in and around Kombolcha, Ethiopia. J. Vet. Med. Anim. Health, 2016, 8(1): 1-10 CrossRef
  20. Hezil N., Baazize-Ammi D., Kebbal S., Saadaoui R., Brahim E.M., Guetarni D. Principal germs causing clinical mastitis in dairy cattle farms in governorate of Blida (Algeria). Journal of Animal Science Advances, 2013, 3(1): 19-26
  21. Sankar P. New therapeutic strategies to control and treatment of bovine mastitis. Vet. Med. Open J., 2016, 1(2): e7-e8 CrossRef
  22. Gomes F., Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr. Microbiol., 2016, 72: 377-382 CrossRef
  23. Sun H., Xue F., Qian K., Zhang X., Yin Z. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis. J. Zhejiang Univ. - Sci. B, 2006, 7: 324-330 CrossRef
  24. Supotnitskiy M.V. Mechanisms of antibiotics resistance in bacteria. Biopreparats (Biopharmaceuticals), 2011, 2: 4-11.
  25. Al-Ashmony A.L., Al-Sawy A.A.F., Torky H.A. Genotypic molecular detection of certain genes encoding virulence determinates and atibiotic resistance in Staphylococcus aureus isolates from mastitis cows. Alexandria Journal of Veterinary Sciences (AJVS), 2016, 49(2): 90-98 CrossRef
  26. Maram A., Mamu G., Birhanu T. Prevalence and antibiotic resistance of Staphylococcus aureus mastitis in Holeta area, Western Ethiopia. Global Veterinaria, 2016, 16(4): 365-370.
  27. Villanueva San Martin M., Jousselin A., Baek K.T., Prados J., Andrey D.O., Renzoni A., Ingmer H., Frees D. Rifampicin resistance rpoB alleles or multicopy thioredoxin/thioredoxin reductase suppresses the lethality of disruption of the global stress regulator spx in Staphylococcus aureus. J. Bacteriol., 2016, 198(19): 2719-2731 CrossRef
  28. Jousselin A., Manzano C.S., Biette A., Reed P., Pinho M.G., Rosato A.E., Kelley W.L., Renzoni A.M. The Staphylococcus aureus chaperone prsA is a new auxiliary factor of oxacillin resistance affecting penicillin-binding protein 2A. Antimicrob. Agents Chemother., 2016, 60(3): 1656-1666 CrossRef
  29. Artem’evaO.A., PereselkovaD.A., FomichevYu.P. Dihydroquercetin, the bioactive substance, to be used against pathogenic microorganisms as an alternative to antibiotics. Agricultural Biology, 2015, 50(4): 513-519 CrossRef (in Engl.).
  30. Artem’eva O.A., Pereselkova D.A., VinogradovaI. V., Kotkovskaya E.N., Gladyr’ E.A., Sivkin N.V., Zinovieva N.A.Screening of dairy cows’ herd for presence in milk of hemolytic microorganisms in relation to somatic cell content. Agricultural Biology, 2015, 50(6): 810-816 CrossRef (in Engl.).
  31. Mašlanová I., Doška J., Varga M., Kuntová L., Muzík J., Malúšková D., Ruzicková V., Pantucek R. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ. Microbiol. Reports, 2013, 5: 66-73 CrossRef
  32. Verstappen K.M., Tulinski P., Duim B., Fluit A.C., Carney J., van Nes A. The effectiveness of bacteriophages against methicillin-resistant staphylococcus aureus ST398 nasal colonization in pigs. PLoS ONE, 2016, 11(8): e0160242 CrossRef
  33. Opredelenie chuvstvitel'nosti mikroorganizmov k antibakterial'nym preparatam. Metodicheskie ukazaniya. MUK 4.2.1890-04 (utv. Glavnym gosudarstvennym sanitarnym vrachom RF 04.03.2004[Assay of the sensitivity of microorganisms to antibacterial agents — guidelines (approved by Chief State Sanitary Physician of the Russian Federation, March 4, 2004]. Available http://docs.cntd.ru/document/1200038583 [No date] (in Russ.).
  34. Komarov V.Yu., Belkin B.L. Izvestiya Orlovskogo GAU, 2015, 3(53): 100-102 (in Russ.).
  35. Komarov V.Yu., Belkin B.L. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2015, 5(127): 107-110 (in Russ.).

back