UDC 636.2:636.01:575.174.015.3:577.2.08:51-76

doi: 10.15389/agrobiology.2015.6.766eng

MULTI-LOCUS GENOTYPING OF CATTLE GENOMES ON THE BASES
OF THE REGION HOMOLOGY TO RETROTRANSPOSONS

V.I. Glazko1, 2, G.Yu. Kosovskii2, S.N. Koval’chuk2, T.T. Glazko1, 2

1K.A. Timiryazev Russian State Agrarian University—Moscow Agrarian Academy,
49, ul. Timiryazevskaya, Moscow, 127550 Russia;
2Center for Experimental Embryology and Reproductive Biotechnology, Federal Agency of Scientific Organizations,
12/4, ul. Kostyakova, Moscow, 127422 Russia,
e-mail vglazko@yahoo.com, gkosovsky@mail.ru, s.n.kovalchuk@mail.ru, tglazko@rambler.ru

Received April 2, 2015

Intensification in livestock has led to necessity of developing methods which allows to estimate animal genomic breeding values (GBV). In this, an approach was based on identifying association of animal production traits’ variability to polymorphism in different genome elements, from microsatellite loci to millions of single nucleotide polymorphisms (SNPs), in genome-wide sequencing. Despite numerous accumulated data, the development of relatively simple, fast and affordable to interpretation methods of polyloci genotyping (genome scan) for assessing breed «gene pool standard» or genomic selection is still actual. The mobile genetic elements, being high polymorphic genomic sites, can serve as anchors in a multi-locus genotyping. The species-specific retrotransposons such as L1_BT LINE which present in the bovine genome with high frequency and the endogenous retrovirus ENV1_BT are of particular interest. In this regard, the aim of this work was the comparative analysis of polymorphism in genomic DNA fragments flanked by inverted repeats of nucleotide sequences homologous to fragments of these retrotransposons in genomes of specialized dairy Ayrshire and Black and White Holstein breeds and the Kalmyk beef breed. A recombination between L1_BT LINE and ENV1_BT we reported earlier turned out to be conservative in studied breeds. This apparently indicated it to be old in appearance. Since the genetic relationships identified from distribution patterns and length polymorphisms of DNA flanked by ENV1_BT inverted repeats differed significantly between specialized dairy breeds and local meat breed but were low variable within the breeds, this allowed to conclude about its relatively low transposition activity. The PIC values (polymorphic information content) for spectra produced in PCR with the endogenous retrovirus ERV1_BT fragment as a primer ranged from 0.075 to 0.089 for studied breeds. Distribution of inverted repeats homologous to L1_BT was different in character and varied among breeds and within breeds, the PIC values were substantially higher and ranged from 0.062 to 0.260. Thus, the use of multi-locus genotyping of transposable elements is effective for the purposes of animal genetics and breeding but their application depends on transposition activity. Our data showed that the ENV1_BT inverted repeats seem to be convenient marker in genetic differentiation among breeds and revealing «gene pool standard», whereas more transposable L1_BT elements are more relevant in indicating individual variability within a breed.

Keywords: multi-locus genotyping, retrotransposons, inverted repeats, genomic scanning, breed, cattle.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Daetwyler H.D., Capitan A., Pausch H., Stothard P., van Binsbergen R., Brøndum R.F., Liao X., Djari A., Rodriguez S.C., Grohs C., Esquerré D., Bouchez O., Rossignol M.N., Klopp C., Rocha D., Fritz S., Eggen A., Bowman P.J., Coote D., Chamberlain A.J., Anderson C., VanTassell C.P., Hulsegge I., Goddard M.E., Guldbrandtsen B., Lund M.S., Veerkamp R.F., Boichard D.A., Fries R., Hayes B.J. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet., 2014, 46(8): 858-865 CrossRef
  2. Hozé C., Fritz S., Phocas F., Boichard D., Ducrocq V., Croiseau P. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. J. Dairy Sci., 2014, 97(6): 3918-3929 CrossRef
  3. Stothard P., Liao X., Arantes A.S., De Pauw M., Coros C., Plastow G.S., Sargolzaei M., Crowley J.J., Basarab J.A., Schenkel F., Moore S., Miller S.P. A large and diverse collection of bovine genome sequences from the Canadian Cattle Genome Project. Gigascience, 2015, 4: 49 CrossRef
  4. Xu L., Bickhart D.M., Cole J.B., Schroeder S.G., Song J., VanTas-
    sell C.P., Sonstegard T.S., Liu G.E. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol., 2015, 32(3): 711-725 CrossRef
  5. Patry C., Jorjani H., Ducrocq V. Effects of a national genomic preselection on the international genetic evaluations. J. Dairy Sci., 2013, 96(5): 3272-3284 CrossRef
  6. Zhao F., McParland S., Kearney F., Du L., Berry D.P. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Select. Evol., 2015, 47: 49 CrossRef
  7. Sempéré G., Moazami-Goudarzi K., Eggen A., Laloë D., Gautier M., Flori L. WIDDE: a Web-Interfaced next generation database for genetic diversity exploration, with a first application in cattle. BMC Genomics, 2015, 16(1): 940 CrossRef
  8. Cicconardi F., Chillemi G., Tramontano A., Marchitelli C., Valentini A., Ajmone-Marsan P., Nardone A. Massive screening of copy number population-scale variation in Bos taurus genome. BMC Genomics, 2013, 14: 124 CrossRef
  9. Xu L., Cole J.B., Bickhart D.M., Hou Y., Song J., VanRaden P.M., Sonsteg-
    ard T.S., VanTassell C.P., Liu G.E. Genome wide CNV analysis reveals additional variants associated with milk production traits in Holsteins. BMC Genomics, 2014, 15: 683 CrossRef
  10. Bickhart D.M., Liu G.E. The challenges and importance of structural variation detection in livestock. Front. Genet., 2014, 5: 37 CrossRef
  11. Kalendar' R.V., Glazko V.I. Fiziologiya i biokhimiya kul'turnykh rastenii, 2002, 34(4): 279-296.
  12. Glazko V.I., Kosovskii G.Yu., Koval'chuk S.N., Arkhipov A.V., Petro-
    va I.O., Dedovich G.O., Glazko T.T. Innovatsionnye tekhnologii v meditsine, 2014, 2(03): 63-79.
  13. Elsik C.G., Tellam R.L., Worley K.C. et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324: 522-528 CrossRef
  14. Walsh A.M., Kortschak R.D., Gardnerb M.G., Bertozzia T., Adelsona D.L. Widespread horizontal transfer of retrotransposons. PNAS USA, 2013, 110(3): 1012-10160 CrossRef
  15. Smyka P., Kalendar R., Ford R., Macas J., Griga M. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity, 2009, 103: 157-167 CrossRef
  16. McInerney C.E., Allcock A.L., Johnson M.P., Bailie D.A., Prodohl P.A. Comparative genomic analysis reveals species dependent complexities that explain difficulties with microsatellite marker development in mollusks. Heredity, 2011, 106: 78-87 CrossRef
  17. Adelson D.L., Raison J.M., Garber M., Edgar R.C. Interspersed repeats in the horse (Equus caballus); spatial correlations highlight conserved chromosomal domains. Anim. Genet., 2010, 41 (Suppl. 2): 91-99 CrossRef
  18. Grandi F.C., An W. Non-LTR retrotransposons and microsatellites. Partners in genomic variation. Mobile Genetic Elements, 2013, 3: e25674 CrossRef
  19. Startek M., Szafranski P., Gambin T., Campbell I.M., Hixson P., Shaw C.A., Stankiewicz P., Gambin A. Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucl. Acids Res., 2015, 43(4): 2188-2198 CrossRef
  20. Adelson D.L., Raison J.M., Edgar R.C. Characterization and distribution of ret-rotransposons and simple sequence repeats in the bovine genome. PNAS USA, 2009, 106(31): 12855-12860 CrossRef
  21. Garcia-Vallve S., Puigbo P. DendroUPGMA: A dendrogram construction utility. 2002 (http://genomes.urv.cat/UPGMA/).
  22. Nei M., Li W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS USA, 1979, 76: 5269-5273.
  23. Page R. TreeView: An application to display phylogenetic trees on personal computers. CABIOS applications note, 1996, 12(4): 357-358.
  24. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics, 2012, 28: 2537-2539 CrossRef
  25. Xiao R., Park K., Oh Y., Kim J., Park C. Structural characterization of the g-genome of BERV γ4, the most abundant endogenous retrovirus family in cattle. Mol. Cells, 2008, 26: 404-408.
  26. Garcia-Etxebarria K., Jugo B.M. Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J. Virol., 2010 Oct, 84(20): 10852-10862 CrossRef
  27. Saylor B., Elliott T.A., Linquist S., Kremer S.C., Gregory T.R., Cottenie K. A novel application of ecological analyses to assess transposable element distributions in the genome of the domestic cow, Bos taurus. Genome, 2013, 56: 521-533 CrossRef
  28. Beja-Pereira A., Luikart G., Bradley D., Bradley D.G., Jann O.C., Bertorelle G., Chamberlain A.T., Nunes T.P., Metodiev S., Ferrand N., Erhardt G. Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nature Genet., 2003, 35(4): 311-313 CrossRef

back