UDC 636.52/.58:573.6.086.83:636.082

doi: 10.15389/agrobiology.2015.6.729eng

Acknowledgements:
The equipment of Bioresources and Bioengineering Center of L.K. Ernst All-Russian Research Institute of Animal Husbandry was used.
Supported financially by Federal Agency of Scientific Organizations (the State Registration Number NIR 01201455101)

EFFICIENCY OF LOCAL TRANSGENESIS OF THE OVIDUCTAL
CELLS IN CHICKEN AS INFLUENCED BY HORMONAL STIMULATION

D.V. Beloglazov, N.A. Volkovа, L.A. Volkova, N.A. Zinovieva

L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, pos. Dubrovitsy, Podolsk Region, Moscow Province, 142132 Russia, e-mail natavolkova@inbox.ru

Received September 12, 2015

One of the promising areas of biotechnology is to create transgenic chicken bioreactors. However, despite notable successes in avian transgenesis, the creation of transgenic chickens now is a particular problem. Searches and development of alternative methods of directed gene transfer are required, one of which is genetic transformation of certain organs, in particular chicken oviduct (somatic transgenesis). This can significantly reduce the expenditure of time and materials in the preparation of transgenic organisms than using other cellular targets for targeted delivery of DNA (cell blastoderm, primordial germ cells, embryonic stem cells) because the genetically engineering manipulation is possible to be conducted only on embryonic material. The aim of this study was to investigate the effectiveness of the delivery of recombinant DNA into the chicken oviduct cells in vivo and development of methodological approaches to increase the efficiency of transgenesis. In the present work a retroviral vector pLN-GFP was used, based on the Moloney murine leukemia virus (Mo-MuLV), in which a sequence of GFP (green fluorescent protein) marker gene has been cloned. Packaging cell line GP+envAM12 has been used to package retroviral vector pLN-GFP. To determine the optimal duration of administration of gene constructs a proliferative activity was analyzed in the oviduct cells at the age of 1, 2, 3, 4, 4.5 and 5 months, and at the age of 2 months within 24 and 48 hours after hormonal stimulation by 0.1 % sinestrol solution. The introduction of the retroviral vector was performed by injecting the solution of the gene construct directly into the protein part of the oviduct of hens at the age of 4 months without hormonal pre-stimulation (group I) and at the age of 2 months within 24 h after sinestrol injection (group II). Analysis of the integration and expression of recombinant DNA in chick oviduct cells was performed at the age of 6 months. As a result of histological investigations it was found that the maximum proliferative activity in the protein part of oviduct was observed in a period between 4 and 4.5 months: the relative DNA content of the cells at this period increased by 3.4 rel. units, which was equivalent to an increase of this parameter over the entire preceding period from 1 to 4 months. The analysis of histological sections of the oviduct in 2-month-old chickens 24 hours after sinestrol injection revealed a significant change in the structure of the oviduct, typical for histological structure of the magnum portion of the oviduct at the 4 month age, and after 48 hours the oviduct histological structure corresponded to that of mature chicken. An average efficiency of the hen oviduct cell transformation assessed as a percentage of the transformed cells to the total cell number of this type in the oviduct, in group I was 17.2±3.1 % whereas in group II it was 57.3±6.3 %. Thus, the use of hormone treatment has allowed a 3.3-fold increase in the effectiveness of local transgenesis of the oviductal cells in chickens.

Keywords: hens, retroviral vectors, transfection, transgenic animals.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Zinovieva N.A., Volkova N.A., Bagirov V.A., Brem G. Ekologicheskaya genetika, 2015, XIII(2): 58-76.
  2. Byun S.J., Kim S.W., Kim K.W., Kim J.S., Hwang I.S., Chung H.K., Kan I.S., Jeon I.S., Chang W.K., Park S.B., Yoo J.G. Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Biosci. Biotechnol. Biochem., 2011, 75(4): 646-649 CrossRef
  3. Lillico S.G., Sherman A., McGrew M.J., Robertson C.D., Smith J., Haslam C., Barnard P., Radcliffe P.A., Mitrophanous K.A., Elliot E.A., Sang H.M. Oviduct-specific expression of two therapeutic proteins in transgenic hens. PNAS, 2007, 104(6): 1771-1776 CrossRef
  4. Kodama D., Nishimiya D., Nishijima K., Okino Y., Inayoshi Y., Kojima Y., Ono K., Motono M., Miyake K., Kawabe Y., Kyogoku K., Yamashita T., Kamihira M., Iijima S. Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system. J. Biosci. Bioeng., 2012, 113(2): 146-153 CrossRef
  5. Harvey A.J., Speksnijder G., Baugh L.R., Morris J.A., Ivarie R. Expression of exogenous protein in the egg white of transgenic chickens. Nat. Biotechnol., 2002, 20(4): 396-399 CrossRef
  6. Kwon M.S., Koo B.C., Choi B.R., Park Y.Y., Lee Y.M., Suh H.S., Park Y.S., Lee H.T., Kim J.H., Roh J.Y., Kim N.H., Kim T. Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Mol. Reprod. Dev., 2008, 75(7): 1120-1126 CrossRef
  7. Kwon S.C., Choi J.W., Jang H.J., Shin S.S., Lee S.K., Park T.S., Choi I.Y., Lee G.S., Song G., Han J.Y. Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol. Reprod., 2010, 82: 1057-1064 CrossRef
  8. Rapp J.C., Harvey A.J., Speksnijder G.L., Hu W., Ivarie R. Biologically active human interferon a-2b produced in the egg white of transgenic hens. Transgenic Res., 2003, 12(5): 569-575 CrossRef
  9. Scott B.B., Velho T.A., Sim S., Lois C. Applications of avian transgenesis. ILAR J., 2010, 51(4): 353-361 CrossRef
  10. Ivarie R. Avian transgenesis: progress towards the promise. Trends Biotechnol., 2003, 21: 14-19 CrossRef
  11. Petitte J.N., Mozdziak P.E. Production of transgenic poultry. In: Transgenic animal technology (2nd edition). C.A. Pinkert (ed.). NY, 2002: 279-306 CrossRef
  12. Volkova N.A., Volkova L.A., Fomin I.K., Zinov'eva N.A., Gorelik L.Sh., Lotsmanova N.S. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 2: 58-61 CrossRef, CrossRef
  13. Volkova N.A., Tomgorova E.K., Bagirov V.A., Beloglazov D.V., Zinovieva N.A., Volkova L.A., Ernst L.K. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2009, 6: 44-48.
  14. Kamihira M., Ono K., Esaka K., Nishijima K., Kigaku R., Komatsu H., Yamashita T., Kyogoku K., Iijima S. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J. Virol., 2005, 79(17): 10864-10874 CrossRef
  15. Smith C.A., Roeszler K.N., Sinclair A.H. Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBP. Differentiation, 2009, 77(5): 473-482 CrossRef
  16. Scott B.B., Lois C. Generation of tissue-specific transgenic birds with lentiviral vectors. PNAS, 2005, 102(45): 16443-16447 CrossRef
  17. Mizuarai S., Ono K., Yamaguchi K., Nishijima K.-i., Kamihira M., Iijima S. Production of transgenic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochem. Biophys. Res. Commun., 2001, 286(3): 456-463 CrossRef
  18. McGrew M.J., Sherman A., Ellard F.M., Lillico S.G., Gilhooley H.J., Kingsman A.J., Mitrophanous K.A., Sang H. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep., 2004, 5(7): 728-733 CrossRef
  19. Scott B.B., Lois C. Generation of tissue-specific transgenic birds with lentiviral vectors. PNAS USA, 2005, 102(45): 16443-16447 CrossRef
  20. Chapman S.C., Lawson A., Macarthur W.C., Wiese R.J., Loechel R.H., Burgos-Trinidad M., Wakefield J.K., Ramabhadran R., Mauch T.J., Schoenwolf G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development, 2005, 132: 935-940 CrossRef
  21. Mozdziak P.E., Borwornpinyo S., McCoy D.W., Petitte J.N. Development of transgenic chickens expressing bacterial β-galactosidase. Dev. Dyn., 2003, 226(3): 439-445 CrossRef
  22. Mikroskopicheskaya tekhnika: Rukovodstvo /Pod redaktsiei D.S. Sarkizova, Yu.P. Perova [Technique of microscopy: manual. D.S. Sarkizov, Yu.P. Petrov (eds.)]. Moscow, 1996.
  23. Romeis B. Mikroskopicheskaya tekhnika [Technique of microscopy]. Moscow, 1953. 
  24. Zinovieva N.A., Popov A.N., Ernst L.K., Marzanov N.S. Metodicheskie rekomendatsii po ispol'zovaniyu metoda polimeraznoi tsepnoi reaktsii v zhivotnovodstve [Manual of PCR analysis technique in animal husbandry]. Dubrovitsy, 1998.
  25. Kusuhara S., Ohashi T. Immunohistochemical detection of estrogen receptors in the magnum and shell gland of the chicken oviduct. Japanese Poult. Sci., 1991, 28: 328-334 CrossRef

back