UDC 636.01+502.74):57.086.13

doi: 10.15389/agrobiology.2014.6.3eng


G.N. Singina, N.A. Volkova, V.A. Bagirov, N.A. Zinovieva

All-Russian Research Institute of Animal Husbandry, Russian Academy of Agricultural Sciences,
pos. Dubrovitsy, Podolsk Region, Moscow Province, 142132 Russia,
e-mail g_singina@mail.ru, natavolkova@inbox.ru, vugarbagirov@mail.ru, n_zinovieva@mail.ru

Received August 18, 2014

Extinction of many species is irreversible and is a part of the natural evolution, but human activities have influenced this process, making it much faster comparing to speciation. According to FAO, approximately 20 % of the breeds of cattle, goats, pigs, horses and poultry in the world are currently at risk of disappearance, many have died in the past few years, as a result their genetic characteristics lost forever. The role of banks in the management of genetic resources and the conservation of endangered species is particularly noticeable in the last decade. Most cryobanks focus on the cryopreservation of gametes (primarily sperm) and embryos. Their main goal is to produce offspring using reproductive technologies, which include artificial insemination, in vitro fertilization and embryo transfer. The discovery of the phenomenon of reprogramming somatic cell nuclear allowed expanding the range of forms of biological material in programs for cryopreservation. Creating cryobanks of somatic cells as donors of nuclei for cloning considered an auxiliary instrument for the preservation and improvement of the gene pool of farm animals and poultry. To obtain viable cryopreserved cell lines very small amount of biopsy material, including that of dead animals, is sufficient, but such lines contain the complete genome and proteome. In contrast to germ cells, embryos and generative tissues, the cryopreserved somatic cells after repeated thawing are capable to regenerate, i.e. almost infinitely may serve as a source of biomaterial for use in assisted reproductive technologies and biological research, including retrospective reconstruction. Furthermore, due to the small size the somatic cells are more resistant to cryopreservation. This review also provides a brief description of the principles and history of cloning. The advantages of the use of different cell types as karyoplasts are discussed. In particular, almost all types of cells (e.g. embryonic cells, mammary cells, cumulus, granulosa, oviduct, liver, fibroblasts, white blood cells and embryonic stem cells) can be used for the production of cloned animals, but the cloning efficiency depends significantly on the type of cells. Aiming embryo development and birth of live offspring, the fetal fibroblasts as donors of nuclear material for cloning are most effective. Alternatively, the stem cells may be a source of the nuclei. Stem or progenitor cells (i.e., stem, determined to differentiate in specific type cells) are easier reprogrammed than terminally differentiated cells. Also when stem cells nuclei are used as karyoplasts the number of cloned embryos significantly increased. The advances in interspecific cloning as a strategy for restoration of rare and endangered species are discussed. Numerous examples show that somatic cells can be considered the most promising material for the recovery of animal genetic resources of different types. Particularly from 1997 to 2012 using the differentiated somatic cells the domestic and wild animals of different species such as sheep, mice, cows, goats, pigs, guar, mouflon, domestic cat, rabbits, mule, horse, rat, wildcat, dog, banteng, ferret, wolves, buffalo, deer, mountain goat, camel, coyote were obtained. Cattle are still the leader in the production of cloned offspring with the efficacy 10 % on average, and in some cases up to 25 %, while for most other animals it does not exceed 1 %. Under controlled conditions in farms with good management, the productivity of clones should vary only within the remaining natural variability and mitochondrial genetic variability due to cloning technology.

Keywords: somatic cells cryobanks, cloning, biodiversity, animal genetic resources.


Full article (Rus)

Full text (Eng)



1. Holt W.V., Pickard A.R. Role of reproductive technologies in genetic resource banks in animal conservation. Rev. Reprod., 1999, 4(3): 143-150. CrossRef
2. Patterson D.L., Silversides F.G. Farm animal genetic resource conservation. Why and how? Canadian Farm Animal Genetic Resource Foundation, 2003 (http://www.cfagrf.com/Farm_Ani-mal_Gentetic_Resource_Conservation_Why_and_How.htm).
3. Buerkle T. FAO sounds alarm on loss of livestock breeds. Food and Agriculture Organization of the United Nations, 2007 (http://www.fao.org).
4.FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture. FAO, 2007.
5. FAO. Global Plan of Action for Animal Genetic Resources. FAO, 2007.
6. Pereira R.M., Marques C.C. Animal oocyte and embryo cryopreservation. Cell and Tissue Banking, 2008, 9(4): 267-277. CrossRef
7. Roldan E.R., Gomendio M., Garde J.J., Espeso G., Ledda S., Berlinguer F., DelOlmo A., Soler A.J., Arregui L., Crespo C., Gonzales R. Inbreeding and reproduction in endangered ungulates: preservation of genetic variation through the Organization of Genetic Resource Banks. Reprod. Domest. Anim., 2006, 41: 82-89. CrossRef
8. Hanks J. Conservation strategies for Africa’s large mammals. Reprod. Fert. Develop., 2001, 13(7-8): 459-468.
9. Lermen D., Blömeke B., Browne A., Clarke A., Dyce P.W., Fixemer T., Fuhr G.R., Holt W.V., Jewgenow K., Lloyd R.E., Lötters S., Paulus M., McGregor Reid G., Rapoport D.H., Rawson D., Ringleb J., Ryder O.A., Spörl G., Schmitt T., Veith M., Müller P. Cryobanking of viable Biomaterials - Implementation of new Strategies for Conservation Purposes. Mol. Ecol., 2009, 18: 1030-1033. CrossRef
10. Andrabi S.M.H., Maxwell W.M.C. A review on reproductive biotechnologies for conservation of endangered mammalian species. Animal Reprod. Sci., 2007, 99(3-4): 223-243. CrossRef
11. Boettcher P.J., Stella A., Pizzi F., Gandini G. The combined use of embryos and semen for cryogenic conservation of mammalian livestock genetic resources. Gen. Select. Evol., 2005, 37(6): 657-675 CrossRef (doi: 10.1186/1297-9686-37-7-657).
12. Niemann H., Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod. Dom. Anim., 2012, 47(5): 2-10. CrossRef
13. Freshni R.Ya. Kul'tura zhivotnykh kletok [Animal cell cultivation]. Moscow, 2010.
14. Agca Y. Genome resource banking of biomedically important laboratory animals. Theriogenology, 2012, 78: 1653-1665. CrossRef
15. Leon-Quinto T., Simon M.A., Cadenas R., Jones J., Martinez-Hernandez F.J., Moreno J.M., Vargas A., Martinez F., Soria B. Developing biological resource banks as a supporting tool for wildlife reproduction and conservation. The Iberian lynx bank as a model for other endangered species. Anim. Reprod. Sci., 2009, 112: 347-361. CrossRef
16. Clarke A.G. The frozen ark project: the role of zoos and aquariums in preserving the genetic material of threatened animals. International Zoo Yearbook, 2009,43(1): 222-230. CrossRef
17. Ryder O. Conservation genomics: applying whole genome studies to species conservation efforts. Cytogenet. Genome Res., 2005, 108: 6-15. CrossRef
18. Blackburn H.D. Genebank development for the conservation of livestock genetic resources in the United States of America. Livestock Sci., 2009, 120: 196-203. CrossRef
19. Mariante A., Albuquerque M., Egito A., McManus C., Lopes M., Paiva S. Present status of the conservation of livestock genetic resources in Brazil. Livestock Sci., 2009, 120: 204-212. CrossRef
20. Martyniuk E. Animal genetic resources in Poland: successes and obstacles. Proc. Workshop: International Strategic Programs for the Conservation of Animal Genetic Resources for Food and Agriculture /C. Lessard (ed.). Vancouver, B.C., 2010: 29-35 (ISBN: 978-0-88880-566-9).
21. Richards K., Lessard C., Plante Y., Anzar M. Canadian animal genetic resources program. Proc. Workshop: International Strategic Programs for the Conservation of Animal Genetic Resources for Food and Agriculture /C. Lessard (ed.). Vancouver, B.C., 2010: 12-18 (ISBN: 978-0-88880-566-9).
22. Blackburn H.D. Genetic Selection and Conservation of Genetic Diversity. Reprod. Dom. Anim., 2012, 47(4): 249-254. CrossRef
23. Arat S., Caputcu A.T., Akkoc T., Pabuccuoglu S., Sagirkaya H., Cirit U., Nak Y., Koban E., Bagis H., Demir K., Nak D., Senunver A., Kilicaslan R., Tuna B., Cetinkaya G., Denizci M., Aslan O. Using cell banks as a tool in conservation programmes of native domestic breeds: the production of the first cloned Anatolian Grey cattle. Reprod. Fertil. Dev., 2011, 23: 1012-1023. CrossRef
24. Campbell K.H.S., Alberio R., Lee J.H., Ritchie W.A. Nuclear transfer in practice. Cloning and Stem Cells, 2001, 3: 201-208. CrossRef
25. Spemann H. Embryonic development and induction. New Haven. CT. Yale Univ. Press, 1938.
26. Willadsen S.M. Nuclear transplantation in sheep embryos. Nature, 1986, 320: 63-65. CrossRef
27. Campbell K.H.S., Whir Me J., Ritchie W.A., Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380: 64-66. CrossRef
28. Schnieke A.E., Kind A.J., Ritchie W.A., Mycock K., Scott A.R., Ritchie M., Wilmut I., Colman A., Campbell K.H. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278: 2130-2133. CrossRef
29. Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998, 394: 369-374.
30. Cibelli J.B., Stice S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Ponce de Leon F.A., Robl J.M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280: 1256-1258. CrossRef
31. Baguisi A., Behboodi E., Melican D.T., Pollock J.S., Destrempes M.M., Cammuso S., Williams J.L., Nims S.D., Poller C.A., Midura P., Palacios M.J., Ayres S.L., Denniston R.S., Hayes M.L., Ziomek C., Meade H.M., Godke R.A., Gavin W.G., Overstrom E.W., Echelard Y. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 1999, 17: 456-461.
32. Polejaeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., Colman A., Campbell K.H. Cloned pigs produced by nuclear transfer form adult somatic cell. Nature, 2000, 407: 85-90.
33. Lanza R.P., Cibelli J.B., Diaz F., Moraes C.T., Farin P.W., Farin C.E., Hammer C.J., West M.D., Damiani P. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning, 2000, 2(2): 79-90. CrossRef
34. Loi P., Ptak G., Barboni B., Fulka J., Cappai P., Clinton M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nature Biotechnol., 2001, 19: 962-964.
35. Shin T., Kraemer D., Pryor J.H., Liu J.L., Ruglia J., Howe L.M., Buck S., Murphy K., Lyons L., Westhusin M.E. A cat cloned by nuclear transplantation. Nature, 2002, 415: 859.
36. Chesné P., Adenot P.G., Viglietta C., Baratte M., Boulanger L., Re-
nard J.P. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol., 2002, 20: 366-369.
37. Woods G.L., White K.L., Vanderwall D.K., Li G., Aston K.I., Bunch T.D., Meerdo L.N., Pate B.J. A mule cloned from fetal cells by nuclear transfer. Science, 2003, 301: 1063. CrossRef
38. Galli C., Lagutina I., Crotti G., Colleoni S., Turini P., Ponderato N., Duchi R., Lazzari G. Pregnancy: a cloned horse born to its dam twin. Nature, 2003, 424: 635. CrossRef
39. Zhou Q., Renard J.P., Le Friec G., Brouchard V., Beujean N., Cherifi N., Fraichard A., Cozzi J. Generation of fertile cloned rats by regulating oocyte activation. Science, 2003, 302: 1179. CrossRef
40. Gomez M.C., Pope C.E., Giraldo A., Lyons L.A., Harris R.F., King A.L., Cole A., Godke R.A., Dresser B.L. Birth of African Wildcat cloned kittens born from domestic cats. Cloning Stem Cells, 2004, 6(3): 247-258. CrossRef
41. Lee B.C., Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J., Hossein M.S., Kim J.J., Kang S.K., Schatten G., Hwang W.S. Dogs cloned from adult somatic cells. Nature, 2005, 436(7051): 641. CrossRef
42. Sansinena M.J., Hylan D., Hebert K., Denniston R.S., Godke R.A. Banteng (Bos javanicus) embryos and pregnancies produced by interspecies nuclear transfer. Theriogynology, 2005, 63: 1081-1091. CrossRef
43. Li Z., Sun X., Chen J., Liu X., Wisely S.M., Zhou Q., Renard J.P., Leno G.H., Engelhardt J.F. Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol., 2006, 293: 439-448. CrossRef
44. Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J., Hwang W.S., Hossein M.S., Kim J.J., Shin N.S., Kang S.K., Lee B.C. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells, 2007, 9: 130-137. CrossRef
45. Shi D., Lu F., Wei Y., Cui K., Yang S., Wei J., Liu Q. Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod., 2007, 77: 285-291. CrossRef
46. Berg D.K., Li C., Asher G., Wells D.N., Oback B. Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod., 2007, 77(3): 384-394. CrossRef 
47. Folch J., Cocero M.J., Chesne P., Alabart J.L., Dominguez V., Cognie Y., Roche A., Fernandez-Arias Marti J.I., Sanchez P., Echegoyen E., Beckers J.F., Bonastre A.S., Vignon X. First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology, 2009, 71: 1026-1034. CrossRef
48. Wani N.A., Wernery U., Hassan F.A., Wernery R., Skidmore J.A. Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod., 2010, 82: 373-379. CrossRef
49. Hwang I., Jeong J.W., Kim J.J., Lee H.J., Kang M., Park K.B., Park J.H., Kim Y.W., Kim W.T., Shin T., Hyun S.H., Jeung E.-B., Hwang W.S. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.Reprod. Fertil. Dev., 2012, 25(8): 1142-1148. CrossRef
50. Campbell K.H.S., Ritchie W.A., Wilmut I. Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: Implications for deoxyribonucleic acid replication and development. Biol. Reprod., 1993, 49: 933-942. CrossRef
51. Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H.S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385: 810-813. CrossRef
52. Zou  X., Chen  Y., Wang  Y., Luo  J., Zhang  Q., Zhang X., Yang  Y.,
Ju H., Shen Y., Lao  W., Xu  S., Du M. Production of cloned goats from enucleated oocytes injected with cumulus cell nuclei or fused with cumulus cells. Cloning, 2001, 3: 31–37. CrossRef
53. Wells D.N., Misica P.M., Tervit H.R. Production of cloned calves following nuclear transfer with adult mural granulosa cells. Biol. Reprod., 1999, 60: 996-1005. CrossRef
54. Kato Y., Tani T., Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil., 2000, 120: 231-237. CrossRef
55. Brem G., Kiililiolzer B. The recent history of somatic cloning in mammals. Cloning and Stem Cells, 2002, 4: 57-63. CrossRef
56. Kato Y., Tani T., Sotomaru Y., Kurokawa K., Kato J., Doguchi H., Yasue H., Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282: 2095-2098. CrossRef
57. Galli S., Duchi R., Moor R.M., Lazzari G. Mammalian leukocytes contain all the genetic information necessary for the development of a new individual cloning. Cloning, 1999, 1: 161-170.
58. Eggan K., Akiitsu H., Loring J., Jackson-Grusby L., Klemm M., Rideout W.M., Yanagimachi R., Jaenisch R. Hybrid vigor, fetal overgrowth and viability of mice derived by nuclear cloning and tetraploid embryo complementation. PNAS USA, 2001, 98: 6209-6214. CrossRef
59. Cetinkaya G., Hatipoglu I., Arat S. The value of frozen cartilage tissues without cryoprotection for genetic conservation. Cryobiology, 2014, 68: 65-70. CrossRef
60. Belloch R., Wang Z., Meissner A., Pollard S., Smith A., Jaenisch R. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells, 2006, 24(9): 2007-2013. CrossRef
61. León-Quinto T., Simón M.A., Cadenas R., Martínez A., Serna A. Different cryopreservation requirements in foetal versus adult skin cells from an endangered mammal, the Iberian lynx (Lynx pardinus). Cryobiology, 2014, 68: 227-233. CrossRef
62. Yang X., Qu L., Wang X., Zhao M., Li W., Hua J., Shi M., Moldovan N., Wang H., Dou Z. Plasticity of epidermal adult stem cells derived from adult goat ear skin. Mol. Reprod. Dev., 2007, 74: 386-396. CrossRef
63. Jin H., Kumar B., Kim J.G., Song H.J., Jeong Y.J., Cho S.K., Balasubramanian S., Choe S.Y., Rho G.J. Enhanced development of porcine embryos cloned from bone marrow mesenchymal stem cells. Int. J. Dev. Biol., 2007, 51: 85-90. CrossRef
64. Kato Y., Imabayashi H., Mori T., Tani T., Taniguchi M., Higashi M., Matsumoto M., Umezawa A., Tsunoda Y. Nuclear transfer of adult bone marrow mesenchymal stem cells: developmental totipotency of tissuespecific stem cells from an adult mammal. Biol. Reprod., 2004, 70: 415-418. CrossRef
65. Bosch P., Pratt S.L., Stice S.L. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol. Reprod., 2006, 74: 46-57. CrossRef
66. Kumar B.M., Jin H.F., Kim J.G., Ock S.A., Hong Y., Balasubramanian S., Choe S.Y., Rho G.J. Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Dev. Dyn., 2007, 236: 435-446. CrossRef
67. Campbell K.H., Alberio R., Choi I., Fisher P., Kelly R.D., Lee J.H., Maalouf W. Cloning: eight years after dolly. Reprod. Domest. Anim., 2005, 40: 256-268 CrossRef.
68. Farin P.W., Piedrahita J.A., Farin C.E. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology, 2006, 65: 178-191. CrossRef
69. Parnpai R., Kanokwan Srirattana K., Imsoonthornruksa S., Ketudat-Cairns M. Somatic cell cloning for livestock and endangered species. Thai. J. Vet. Med., 2011, 41 Suppl.: 77-85.
70. Dominko T., Mitalipova M., Haley B., Beyhan Z., Memili E., McKu-
sick B., First N.L. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol. Reprod., 1999, 60: 1496-1502. CrossRef
71. Yoon T., Choi E.J., Han K.Y., Shim H., Roh S. In vitro development of embryos produced by nuclear transfer of porcine somatic cell nuclei into bovine oocytes using three different culture systems. Theriogenology, 2001, 55: 298. (Abstact).
72. Bui L.C., Vignon X., Campion E., Laloy E., Lavergne Y., Ty L.V., Nguyen B.X., Renard J.P. Use of interspecies nuclear transfer to study the early embryonic development and nuclear activities of the endangered species pseudoryx nghetinhensis (saola). Theriogenology, 2002, 57: 427 (Abstract).
73. Damiani P., Wirtu G., Miller F., Cole A., Pope C., Godke R.A., Dres-
ser B.L. Development of giant eland (Taurotragus oryx) and bovine (Bos taurus) oocytes. Theriogenology, 2003, 58: 390 (Abstract).
74. Sansinena M.J., Reggio B.C., Denniston R.S., Godke R.A. Nuclear transfer embryos from different equine cell lines as donor karyoplasts using the bovine oocyte as recipient cytoplast. Theriogenology, 2002, 58: 775-777.
75. Ty L.V., Hanh N.V., Uoc N.T., Duc N.H., Thanh N.T., Bui L.C., Huu Q.X.,  Nguyen B.X. Preliminary results of cell cryobanking and embryo production of black bear (Ursinus thibetaus) by interspecies somatic cell nuclear transfe. Theriogenology, 2003, 59: 290 (Abstract).
76. Lee B., Wirtu G., Andrews J., Poole K., Dresser B., Bavister B. Blastocyst development after interspecies nuclear transfer of mountain bongo antelope somatic cells into bovine oocytes. Theriogenology, 2002, 57: 586. (Abstract).
77. Kim T.M., Park T.S., Shin S.S., Han J.Y., Moon S.Y., Lim J.M. An interspecies nuclear transfer between fowl and mammal: in vitro development chicken-cattle interspecies embryos and detection of chicken genetic complements. Fertil. Steril., 2004, 82: 957-959.
78. Murakami M., Otoi T., Wongsrikeao P., Agung B., Sambuu R., Suzu-
ki T. Development of interspecies cloned embryos in yak and dog. Cloning Stem Cells, 2005, 7(2): 77-81. CrossRef
79. Seaby R.P., Alexander B., King W.A., Mastromonaco G.F. In vitro development of bison embryos using interspecies somatic cell nuclear transfer. Reprod. Domest. Anim., 2013, 48(60): 881-887. CrossRef