UDC 636.4:575.174:591.4

doi: 10.15389/agrobiology.2014.6.86eng


S.P. Knyazev1, S.V. Nikitin2

1Novosibirsk State Agrarian University, 160, ul. Dobrolyubova, Novosibirsk, 630039 Russia, e-mail knyser@rambler.ru;
2Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, prosp. Lavrentieva, Novosibirsk, 630090 Russia, e-mail nsv1956@mail.ru

Received August 13, 2013

Studying changes of gene pools of populations of the domestic animals caused by selection and reflecting micro evolutionary processes, represents both practical and theoretical interest. As a rule, in such works the qualitative traits controlled by the principle «one genotype — one phenotype» are used that significantly simplifies the analysis. We investigated dynamic processes in Landrace population of domestic pigs (Sus scrofa domesticus), having estimated a variation of one of continuous quantitative traits, the newborn piglet weight, for which similar relationship is not unambiguous. Statistical analysis of the zootechnical register data was carried out on more than 26 thousand pigs that were born within 23 years at an experimental farm (Novosibirsk Province), being the regional authorized Landrace breed nucleus. Ancestors of the formed population were delivered from Latvia in the early 1960s. They were the elite young animals estimated on a standard complex of selection traits. The entire period of existence of population the formation of its breeding nuclear was carried out on a complex of traits according to existing Instruction for estimation of breeding value of pigs. As the Instruction didn’t contain standards on a large newborn weight, the selection on the specified trait wasn’t made. The changes of statistical parameters of the newborn weight in piglets were estimated for each year of the observation, because the analyzed livestock was not a model laboratory population, but a typical breeding commercial herd in which continuous variability of a trait is interfaced to continuous «sliding» alternations of generations and the variability of age structure. During long-time analysis of the dynamics of this unselected trait, the directional (moving) selection on genotypes for the loci controlling growth rate of pigs in ontogenesis (in pre- and post-natal periods) is revealed. In the populations where such selection works, the newborn weight of piglets can be used for forecasting pig weight during the postnatal period. Application of «parent—descendant» regression on the newborn weight allowed to estimate the duration of a population gene pool adaptation to new environment. It appeared that process of adaptation lasted nearly two decades that maked five full changes of the generations. In the same population at the same time the stabilizing selection optimized an individual animal weight at birth, cutting both minimum and maximum values. The described mechanism includes cyclic vector changes towards driving selection against the stabilizing selection vectors and thus maintains the population polymorphism on loci which control prenatal growth and large weight in the newborns. An observed unevenness of wavy change of these cycles should be also noted.

Keywords: pigs, Sus scrofa domesticus, Landrace, population, adaptation, piglet’s newborn weight, regression, the vector of selection, directional (moving) selection, stabilizing selection, microevolution processes.


Full article (Rus)

Full text (Eng)



1. Levontin R. Geneticheskie osnovy evolyutsii [Genetic bases of evolution]. Moscow, 1978.
2. Grant V. Evolyutsiya organizmov [Organismic evolution]. Moscow, 1980.
3. Solbrig O., Solbrig D. Populyatsionnaya biologiya i evolyutsiya [Introduction to population biology and evolution]. Moscow, 1982.
4. Ciobanu D.C., Day A.E., Nagy A., Wales R., Rothschild M.F., Plastow G.S. Genetic variation in two conserved local Romanian pig breeds using type 1 DNA markers. Genet. Sel. Evol., 2001, 33: 417-432. CrossRef
5. Allen M.S., Matisoo-Smith E., Horsburgh A. Pacific «Babes»: issues in the origins and dispersal of Pacific pigs and the potential of mitochondrial DNA analysis. International Journal of Osteoarchaeology, 2001, 11: 4-13. CrossRef
6. Fan B., Wang Z.-G., Li Y.-J., Zhao X.-L., Liu B., Zhao S.-H., Yu M., Li M.-H., Chen S.-L., Xiong T.-A., Li K. Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite markers. Anim. Genet., 2002, 33: 422-427. CrossRef
7. Vega-Pla J.L., Martínez A.M., Cabello A., Rodríguez-Gallardo1 P.P., Delgado J.V. Preliminary study of individual assignment of Iberian pigs using DNA genetic markers. Arch. Zootec., 2003, 52: 225-230.
8. Fan B., Yang S.-L., Liu B., Yu M., Zhao S.-H., Li K. Characterization of the genetic diversity on natural populations of Chinese miniature pig breeds. Anim. Genet., 2003, 34: 465-476. CrossRef
9. Li S.-J., Yang S.-H., Zhao S.-H., Fan B., Yu M., Wang H.-S., Li M.-H., Liu B., Xiong T.-A., Li K. Genetic diversity analyses of 10 indigenous Chinese pig populations based on 20 microsatellites. J. Anim. Sci., 2004, 82: 368-374.
10. Kim T.H., Kim K.S., Choi B.H., Yoon D.H., Jang G.W., Lee K.T., Chung H.Y., Lee H.Y., Park H.S., Lee W. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci., 2005, 83: 2255-2263.
11. Knyazev S.P., Nikitin S.V., Savina M.A., Yudina O.P., Ermolaev V.I., Gorelov I.G., Danil'chenko N.V., Fadeeva N.S. Doklady RASKHN, 2004, 2: 35-38.
12. Thuy N.T.D., Melchinger-Wild E., Kuss A.W., Cuong N.V., Bartenschla-ger H., Geldermann H. Comparison of Vietnamese and European pig breeds using microsatellites. J. Anim. Sci., 2006, 84: 2601-2608. CrossRef
13. Nikitin S.V., Knyazev S.P., Nikolaev A.G., Voloch A.M., Kirichenko A.V., Savina M.A., Yermolaev V.I., Yudina O.P., Bekenev V.A., Aytnazarov R.B. Diversity of wild and domestic pig populations estimated by a set of serum allotypes. Russian Journal of Genetics, 2006, 42(3): 317-326. CrossRef
14. Nikitin S.V., Yudin N.S., Knyazev S.P., Aytnazarov R.B., Kobzev V.F., Bekenev V.A., Savina M.A., Yermolaev V.I. Frequency of chromosomes carrying endogenous retroviruses in the populations of domestic pig and wild boar. Russian Journal of Genetics, 2008, 44(6): 686-693. CrossRef
15. Nikitin S.V., Knyazev S.P., Shvebel T.I., Goncharenko G.M. Dynamics of heterozygosity and its correlation with fitness in a population of domestic pigs. Russian Journal of Genetics, 2009, 45(10): 1238-1246. CrossRef
16. Nikitin S.V., Yudin N.S., Knyazev S.P., Aitnazarov R.B., Bekenev V.A., Deeva V.S., Goncharenko G.M., Kobzev V.F., Savina M.A., Ermolaev V.I. Differentiation of wild boar and domestic pig populations based on the frequency of chromosomes carrying endogenous retroviruses. Natural Science, 2010, 2: 527-534. CrossRef 
17. Yermolaev V.I., Savina M.A., Knyazev S.P., Yudin N.S., Aitnazarov R.B., Bekenev V.A., Deeva V.S., Nikitin S.V. Study of swine alpha macroglobulin gene family polymorphism in the context of some problems of animal breeding. Russian Journal of Genetics: Applied Research, 2013, 3(3): 225-232. CrossRef
18. Knyazev S.P., Nikitin S.T. Standardizing selection and its consequences for genetic population structure. Russian Journal of Genetics, 2011, 47(1): 90-99. CrossRef 
19. Nikitin S.V., Knyazev S.P., Ermolaev V.I. Model of genetic control of the number and location of nipples in domestic Pig. Russian Journal of Genetics, 2012, 48(11): 1128-1140. CrossRef 
20. Nikitin S.V., Knyazev S.P., Yermolaev V.I. Genetic components and the uncertainty of the phenotypic realization of the mass of newborns in domestic pigs Sus scrofa. Russian Journal of Genetics, 2014, 50(1): 61-70. CrossRef
21. Nikitin S.V., Knyazev S.P., Orlova G.V., Bekenev V.A., Danil'chenko N.V. Genetika, 2005, 41(2): 237-245.
22. Quintanilla R., Milan D., Bidanel J.-P. A further look at quantitative trait loci affecting growth and fatness in a cross between Meishan and Large White pig populations. Genet. Sel. Evol., 2002, 34: 193-210. CrossRef 
23. Sato S., Oyamada Y., Atsuji K., Nade T., Sato Sh.-I., Kobayashi E., Mitsuhashi T., Nirasawa K., Komatsuda A., Saito Y., Terai S., Hayashi T., Sugimoto Y. Quantitative trait loci analysis for growth and carcass traits in a Meishan ´ Duroc F2 resource population. J. Anim. Sci., 2003, 81: 2938-2949.
24. Damgaard L.H., Rydhmer L., Løvendahl P., Grandinson K. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci., 2003, 81: 604-610.
25. Rothschildl M.F., Hu1 Z.-L., Jiang Z. Advances in QTL mapping in pigs. Int.  J. Biol. Sci., 2007, 3(3): 192-197. CrossRef 
26. NCBI Map Viewer, 2011 (http://www.nbci.nlm.nih.gov/projects/mapview/).
27. Instruktsiya po bonitirovke svinei [Instruction for pig valuation]. Moscow, 1976.
28. Volkopyalov B.P. Svinovodstvo [Pig breeding]. Leningrad, 1968.
29. Kabanov V.D. Povyshenie produktivnosti svinei [An increase of pig productivity]. Moscow, 1983.
30. Popov I.S. Kormovye normy i kormovye tablitsy [Feed standards and reference tables]. Moscow, 1948.
31. Lakin G.F. Biometriya [Biometry]. Moscow, 1990.
32. Iogansson I., Rendel' Ya., Gravert O. Genetika i razvedenie domashnikh zhivotnykh [Genetics and breeding in livestock]. Moscow, 1970.
33. Lyubishchev A.A. Dispersionnyi analiz v biologii [Dispersion analysis in biology]. Moscow, 1986.
34. Knyazev S.P., Nikitin S.V., Ermolaev V.I. Vestnik NGAU (Novosibirskii gosudarstvennyi agrarnyi universitet), 2013, 1(26): 46-57.