PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.5.789eng

UDC: 632:571.27

Acknowledgements:
Supported financially by the Russian Scientific Foundation (project No. 22-16-00154)

MICROBIAL PROTEINS AS ELICITORS OF PLANT RESISTANCE TO PATHOGENS AND THEIR POTENTIAL FOR ECO-FRIENDLY CROP PROTECTION IN SUSTAINABLE AGRICULTURE (review)

L.A. Shcherbakova1 ✉, V.G. Dzhavakhiya1, Y. Duan2, J. Zhang2

1All-Russian Research Institute of Phytopathology, 5, ul. Institute, pos. Bol’shie Vyazemy, Odintsovskii Region, Moscow Province, 143050 Russia, e-mail larisavniif@yahoo.com (✉ corresponding author),
dzhavakhiya@yahoo.com;
2Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu province, China, e-mail dyb@njau.edu.cn, 2018202061@njau.edu.cn

ORCID:
Shcherbakova L.A. orcid.org/0000-0003-0254-379Х
Duan Y. orcid.org/0000-0002-4183-8729
Dzhavakhiya V.G. orcid.org/0000-0001-8704-0512
Zhang J. orcid.org/0000-0003-2541-4923

Final revision received May 29, 2023
Accepted July 20, 2023

To combat plant diseases, modern agriculture has a large arsenal of xenobiotic pesticides that are toxic to microorganisms. However, the hazardous effects of such pesticides or their degradation products on the environment and human health urgently require the search for new harmless and environmentally safe means of plant pathogen control. In this regard, the attention of researchers is attracted by the phenomenon of natural plant resistance, including the active plant immunity and natural substances that can induce plant defense mechanisms (J.D. Jones et al., 2006; M. Albert, 2013; L. Wiesel et al., 2014; E.J. Andersen et al., 2018; D.F. Klessig et al., 2018). Various microorganisms, pathogenic or nonpathogenic to plants can serve as sources of such substances, including proteins and peptides. When interacting with them, microbial proteins play the role of nonspecific resistance elicitors recognized by plants as conserved microbial patterns (MAMPs or PAMPs) that induce the first line of active plant defense (basic resistance, or PTI) (C. Zipfel, 2009; M.A. Newman, 2013; J. Guo, Y. Cheng, 2022).. Other microbial proteins play the role of effectors involved in the development of the disease, and, if recognized by host plants, can also activate defense responses as elicitors of race-specific resistance (B.P. Thomma et al., 2011; W. Zhang et al., 2022; B.C. Remick et al, 2023). The perception of microbial protein elicitors by plant receptors causes rapid responses and can lead to the development of prolong systemic resistance in plants (T. Boller, G. Felix, 2009; J.B. Joshi et al., 2022; S. Wang et al., 2023). Studying the properties and mechanisms of action of microbial proteins is new and fast-paced research cluster, which results create the basis for one of the most eco-friendly avenue in the field of plant protection and can lead to the development of novel effective biocontrol agents for sustainable agriculture. Over the past few decades, in nonpathogenic and plant pathogenic fungi, oomycetes, bacteria, and viruses, including those affecting agricultural crops, a number of elicitor proteins have been identified that belong to the MAMP/PAMP type, as well as effectors that induce specific immunity (ETI). The review below summarizes and analyzes information on the most important advances in the identification and studying of elicitor proteins produced by various bacteria, fungi, oomycetes, and viruses (D. Qutob et al., 2003; M. Tarallo et al., 2022; Q. Xu et al., 2022). If the corresponding information is known, the peculiarities of the elicitor structure and their mechanisms of action, namely, defense responses of various plants induced by the corresponding elicitors, are briefly described. We also tried to illustrate the diversity of microorganism species able to produce elicitor proteins, which trigger the mechanisms of both specific and nonspecific resistance. The examples of protein and peptide elicitors, for which both basic and novel data are presented, are described in more details. Such bacterial elicitors include flagellin, harpins (similar and differing effects of harpins and flagellins are described), elongation factor Tu, cold shock proteins; elicitors produced by mycelial fungi include effectors of Cladosporium fulvum, elicitors of pathogenic and nonpathogenic Fusarium fungi, and recently discovered МАМРs/PAMPs and ETI-inducing proteins. The review also includes information on the oomycetal elicitors, microbial enzymes possessing eliciting properties, glycoproteins and peptidoglycans, and vector proteins of viruses (Y. Jin et al., 2021; L. Cai et al., 2023). In addition, the prospects for practical application of microbial elicitor proteins are described in a separate section by the example of commercial preparations based on bacterial and fungal protein elicitors, which have been developed in Russia and China and have proved their protective efficiency under field conditions (Dzhavakhiya et al., 2003; W.P. Liu et al., 2007; J. Mao et al., 2010; Q. Dewen et al., 2017).

Keywords: biogenic elisitors, microbial proteins and peptides, vicrobial patterns, effectors, PTI, ETI, plant defence responces, biocontrol, eco-friendly remedies.

 

REFERENCES

  1. Nelson R., Wiesner-Hanks T., Wisser R., Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet.,2018, 19(1): 21-33 CrossRef
  2. Food and Agriculture Organization. New standards to curb the global spread of plant pests and diseases. Available: https://www.fao.org/news/story/en/item/1187738/icode/. Accessed: 28.05.2023.
  3. Hawkins N.J., Bass C., Dixon A., Neve P. The evolutionary origins of pesticide resistance. Biol. Rev., 2019, 94(1): 135-155 CrossRef
  4. Fisher M.C., Hawkins N.J., Sanglard D., Gurr S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science,2018, 360(6390): 739-742 CrossRef
  5. Stuthman D.D., Leonard K.J., Miller-Garvin J. Breeding crops for durable resistance to disease. Advances in Agronomy, 2007, 95: 319-367 CrossRef
  6. Conrath U., Beckers G. J., Flors V., Garcia-Agustin P., Jakab G., Mauch F., Newman M.-A., Pieterse C.M.J., Poinssot B., Pozo M.J., Pugin A., Schaffrath U., Ton J., Wendehenne D., Zimmerli L., Mauch-Mani B. Priming: getting ready for battle. MPMI, 2006, 19(10): 1062-1071 CrossRef
  7. Wiesel L., Newton A.C., Elliott I., Booty D., Gilroy E.M., Birch P.R.J., Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci., 2014, 21(5): 655 CrossRef
  8. Klessig D.F., Choi H.W., D’Maris D.A. Systemic acquired resistance and salicylic acid: past, present, and future. MPMI, 2018, 31(9): 871-888 CrossRef
  9. Conrath U. Molecular aspects of defence priming. Trends in Plant Science, 2011,16(10): 524-531 CrossRef
  10. Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. Primed plants do not forget. Environmental and Experimental Botany, 2013, 94: 46-56 CrossRef
  11. Vlot A.C., Pabst E., Riedlmeier M. Systemic signalling in plant defence. In: eLS. John Wiley & Sons Ltd, Chichester, 2017.
  12. Andersen E.J., Ali S., Byamukama E., Yen Y., Nepal M.P. Disease resistance mechanisms in plants. Genes, 2018, 9(7): 339 CrossRef
  13. Kamle M., Borah R., Bora H., Jaiswal A.K., Singh R.K., Kumar P. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Fungal biotechnology and bioengineering. A.L. Hesham, R. Upadhyay, G. Sharma, C. Manoharachary, V. Gupta (eds.). Springer, Cham, 2020.
  14. Jones J.D., Dangl J.L. The plant immune system. Nature, 2006, 444(7117): 323-329 CrossRef
  15. Newman M.A., Sundelin T., Nielsen J.T., Erbs G. MAMP (microbe- associated molecular pattern) triggered immunity in plants. Front. Plant Sci., 2013, 4: 139 CrossRef
  16. Abdul Malik N.A., Kumar I.S., Nadarajah K. Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int. J. Mol. Sci., 2020, 21(3): 963 CrossRef
  17. Medina-Puche L., Rufián J.S. Role of receptor-like kinases in plant-pathogen interaction. In: Plant receptor-like kinases. S.K. Upadhyay, Shumayla (eds.). Academic Press, Cambridge, 2023. CrossRef
  18. Meng X., Zhang S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology,2013, 51: 245-266 CrossRef
  19. Kadota Y., Shirasu K., Zipfel C. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant and Cell Physiology, 2015, 56(8): 1472-1480 CrossRef
  20. Yuan P., Tanaka K., Du L., Poovaiah B.W. Calcium signaling in plant autoimmunity: a guard model for AtSR1/CAMTA3-mediated immune response. Molecular Plant, 2018, 11(5): 637-639 CrossRef
  21. Zhang Y., Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 2019, 50: 29-36 CrossRef
  22. Zhong C.-L., Zhang C., Liu J.-Z. Hetero-trimeric G protein signaling in plant immunity. Journal of Experimental Botan, 2018, 70(4): 1109-1118 CrossRef
  23. Dodds P.N., Rathjen J.P. Plant immunity: towards an integrated view of plant—pathogen interactions. Nat. Rev. Genet.,2010, 11(8): 539-548 CrossRef
  24. Pruitt R.N., Gust A.A., Nürnberger T. Plant immunity unified. Nature Plants, 2021, 7(4): 382-383 CrossRef
  25. Remick B.C., Gaidt M.M., Vance R.E. Effector-triggered immunity. Annual Review of Immunology, 2023, 41: 453-481 CrossRef
  26. Mejía-Teniente L., Torres-Pacheco I., González-Chavira M.M., Ocampo-Velazquez R.V., Herrera-Ruiz G., Chapa-Oliver A.M., Guevara-González R.G. Use of elicitors as an approach for sustainable agriculture. African Journal of Biotechnology, 2010, 9(54): 9155-9162.
  27. Naito K., Taguchi F., Suzuki T., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. MPMI, 2008, 21(9): 1165-1174 CrossRef
  28. Zipfel C. Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 2009, 12(4): 414-420 CrossRef
  29. Wang B., Yang X., Zeng H., Liu H., Zhou T., Tan B., Yuan J., Guo L., Qiu D. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl. Microbiol. Biotechnol.,2012, 93(1): 191-201 CrossRef
  30. Xu Y., Chen H., Zhou X., Cai X. Induction of hypersensitive response and nonhost resistance by a Cladosporium fulvum elicitor CfHNNI1 is dose-dependent and negatively regulated by salicylic acid. Journal of Integrative Agriculture, 2012, 11(5): 1665-1674 CrossRef
  31. Mishra A.K., Sharma K., Misra R.S. Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 2012, 7(2): 95-120 CrossRef
  32. Erbs G., Newman M.A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Molecular Plant Pathology, 2012, 13(1): 95-104 CrossRef
  33. Albert M. Peptides as triggers of plant defence. Journal of Experimental Botany, 2013, 64(17): 5269-5279 CrossRef
  34. Boller T., He S.Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742-744 CrossRef
  35. Tyuterev S.L. Vestnik zashchity rasteniy,2015, 1(83): 3-13 (in Russ.).
  36. Khavkin E.E. Fiziologiya rasteniy, 2021, 68(2): 115-131 CrossRef (in Russ.).
  37. Popova E.V., Domnina N.S., Sokornova C.V., Kovalenko N.M., Tyuterev S.L. Novel hybrid modulators of plant immune responses based on chitosan and bioactive anti-oxidants and pro-oxidants. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 26(1): 158-170 CrossRef
  38. Slavokhotova A.A., Shelenkov A.A., Andreev Ya.A., Odintsova T.I. Uspekhi biologicheskoy khimii, 2017, 57: 209-244 (in Russ.).
  39. Shcherbakova L.A., Dzhavakhiya V.G. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2013, 15(3-5): 1705-1709 (in Russ.).
  40. Ayliffe M., Sørensen C. Plant non-host resistance: paradigms and new environments. Current Opinion in Plant Biology, 2019, 50: 104-113 CrossRef
  41. Guo J., Cheng Y. Advances in fungal elicitor-triggered plant immunity. Int. J. Mol. Sci., 2022, 23(19): 12003 CrossRef
  42. Gómez-Gómez L., Boller T. Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002 7(6): 251-256 CrossRef
  43. Lu Y., Swartz J.R. Functional properties of flagellin as a stimulator of innate immunity. Sci. Rep., 2016, 6: 18379 CrossRef
  44. Gómez-Gómez L., Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 2000, 5(6): 1003-1011 CrossRef
  45. Boller T., Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 2009, 60: 379-406 CrossRef
  46. Shiu S.-H., Karlowski W.M., Pan R., Tzeng Y.-H., Mayer K.F., Li W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell, 2004, 16(5): 1220-1234 CrossRef
  47. Jelenska J., Davern S.M., Standaert R.F., Mirzadeh S., Greenberg J.T. Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2. Journal of Experimental Botany, 2017, 68(7): 1769-1783 CrossRef
  48. Fliegmann J., Felix G. Immunity: flagellin seen from all sides. Nature Plants, 2016, 2(9): 16136 CrossRef
  49. Hind S.R., Strickler S.R., Boyle P.C., Dunham D.M., Bao Z., O’Doherty I.M., Baccile J.A., Hoki J.S., Viox E.G., Clarke C.R.  Vinatzer B.A.,  Schroeder F.C.,  Martin G.B. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nature Plants, 2016, 2(9): 1-8 CrossRef
  50. Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J.D., Felix G., Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448(7152): 497-500 CrossRef
  51. Macho A.P., Zipfel C. Plant PRRs and the activation of innate immune signaling. Molecular Cell, 2014, 54(2): 263-272 CrossRef
  52. Wei Y., Caceres-Moreno C., Jimenez-Gongora T., Wang K., Sang Y., Lozano-Duran R., Macho A.P. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnol. J., 2018, 16(7): 1349-1362 CrossRef
  53. Cai R., Lewis J., Yan S., Liu H., Clarke C.R., Campanile F., Almeida N.F., Studholme D.J., Lindeberg M., Schneider D., Zaccardelli M., Setubal J.C., Morales-Lizcano N.P., Bernal A., Coaker G., Baker C., Bender C.L., Leman S., Vinatzer B.A. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog., 2011, 7(8): e1002130 CrossRef
  54. Moroz N., Tanaka K. FlgII-28 is a major flagellin-derived defense elicitor in potato. MPMI, 2020, 33(2): 247-255 CrossRef
  55. Haney C.H., Ausubel F.M., Urbach J.M. Innate immunity in plants and animals: differences and similarities. The Biochemist, 2014, 36(5): 40-45 CrossRef
  56. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell,2004, 16(12): 3496-3507 CrossRef
  57. Xu G., Greene G.H., Yoo H., Liu L., Marqués J., Motley J., Dong X. Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature, 2017, 545(7655): 487-490 CrossRef
  58. Wei Z.-M., Laby R.J., Zumoff C.H., Bauer D.W., He S.Y., Collmer A., Beer S.V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257(5066): 85-88 CrossRef
  59. He S.Y., Huang H.C., Collmer A. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 1993, 73(7): 1255-1266 CrossRef
  60. Kim J.G., Jeon E., Oh J., Moon J.S., Hwang I. Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. Journal of Bacteriology, 2004, 186(18): 6239-6247 CrossRef
  61. Tarafdar P.K., Vedantam L.V., Kondreddy A., Podile A.R., Swamy M.J. Biophysical investigations on the aggregation and thermal unfolding of harpinPss and identification of leucine-zipper-like motifs in harpins. Biochimica et Biophysica Acta (BBA) — Proteins and Proteomics,2009, 1794(11): 1684-1692 CrossRef
  62. Choi M.-S., Kim W., Lee C., Oh C.-S. Harpins, multi-functional proteins secreted by gram-negative plant-pathogenic bacteria. MPMI,2013, 26(10): 1115-1122 CrossRef
  63. Dong H.-P., Yu H., Bao Z., Guo X., Peng J., Yao Z., Chen G., Qu S., Dong H. The ABI2- dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta,2005, 221(3): 313-327 CrossRef
  64. Yang Y., Chen T., Dai X., Yang D., Wu Y., Chen H., Zheng Y., Zhi Q., Wan X., Tan X. Comparative transcriptome analysis revealed molecular mechanisms of peanut leaves responding to Ralstonia solanacearum and its type III secretion system mutant. Front. Microbiol., 2022, 13: 998817 CrossRef
  65. Xie L., Liu Y., Wang H., Liu W., Di R., Miao W., Zheng F. Characterization of harpin Xoo induced hypersensitive responses in non host plant, tobacco. J. Plant Biochem. Biotechnol., 2017, 26(1): 73-79 CrossRef
  66. Zou L.-F., Wang X.-P., Xiang Y., Zhang B., Li Y.-R., Xiao Y.-L., Wang J.-S., Walmsley A.R., Chen G.-Y. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Applied and Environmental Microbiology, 2006, 72(9): 6212-6224 CrossRef
  67. Cho H.-J., Park Y.-J., Noh T.-H., Kim Y.-T., Kim J.-G., Song E.-S., Lee D.-H., Lee B.-M. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Microbial Pathogenesis,2008, 44(6): 473-483 CrossRef 
  68. Liu Y., Zhou X., Liu W., Xiong X., Lv C., Zhou X., Miao W. Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants. PLoS ONE,2018, 13(1): e0188788 CrossRef
  69. Miao W.-G., Song C.-F., Wang Y., Wang J.-S. HpaXm from Xanthomonas citri subsp. malvacearum is a novel harpin with two heptads for hypersensitive response. J. Microbiol. Biotechnol., 2010, 20(1): 54-62.
  70. Haapalainen M., Engelhardt S., Kuefner I., Li C.M., Nuernberger T., Lee J., Romantschuk M., Taira S. Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology, 2011, 12(2): 151-166 CrossRef
  71. Wu H., Wang S., Qiao J., Liu J., Zhan J., Gao X. Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. J. Microbiol. Biotechnol., 2009, 19(2): 194-203 CrossRef
  72. Chen G.-Y., Zhang B., Wu X.-M., Zhao M.-Q., Wei S., Wu X.B. Cloning and characterization of an harpin encoding gene from Xanthomonas axonopodis pv. glycines required for hypersensitive response on nonhost plant tobacco. Wei Sheng Wu Xue Bao,2005, 45(4): 496-499.
  73. Palmieri A.C.B., Amaral A.M., Homem R.A., Machado M.A. Differential expression of pathogenicity- and virulence-related genes of Xanthomonas axonopodis pv. citri under copper stress. Genet. Mol. Biol., 2010, 33(2): 348-353 CrossRef
  74. Wang X., Zhang L., Ji H., Mo X., Li P., Wang J., Dong H. Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol., 2018, 18(1): 105 CrossRef
  75. Niu X.-N., Wei Z.-Q., Zou H.-F., Xie G.-G., Wu F., Li K.-J., Jiang W., Tang J.-L., He Y.-Q. Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiol., 2015, 15(1): 233 CrossRef
  76. Solé M., Scheibner F., Hoffmeister A.-K., Hartmann N., Hause G., Rother A., Jordan M., Lautier M., Arlat M., Büttner D. Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps type II secretion system and outer membrane vesicles. Journal of Bacteriology, 2015, 197(17): 2879-2893 CrossRef
  77. Fu M., Xu M., Zhou T., Wang D., Tian S., Han L., Dong H., Zhang C. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. Journal of Experimental Botany, 2014, 65(6): 1439-1453 CrossRef
  78. Kvitko B.H., Ramos A.R., Morello J.E., Oh H.-S., Collmer A. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. Journal of Bacteriology,2007, 189(22): 8059-8072 CrossRef
  79. Tampakaki A.P., Panopoulos N.J. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPph produced in planta. MPMI, 2000, 13(12): 1366-1374 CrossRef
  80. Reboutier D., Frankart C., Briand J., Biligui B., Laroche S., Rona J.-P., Barny M.-A., Bouteau F. The HrpNea harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. MPMI, 2007, 20(1): 94-100 CrossRef
  81. Li P., Zhang L., Mo X., Ji H., Bian H., Hu Y., Majid T., Long J., Pang H., Tao Y., Ma J., Dong H. Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. Journal of Experimental Botany, 2019, 70(12): 3057-3073 CrossRef
  82. Grant S.R., Fisher E.J., Chang J.H., Mole B.M., Dangl J.L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annual Review of Microbiology, 2006, 60: 425-449 CrossRef
  83. Engelhardt S., Lee J., Gabler Y., Kemmerling B., Haapalainen M.-L., Li C.-M., Wei Z., Keller H., Joosten M., Taira S., Nurnberger T. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. The Plant Journal, 2009, 57(4): 706-717 CrossRef
  84. Oh C.S., Beer S.V. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology,2007, 145(2): 426-436 CrossRef
  85. Chang X., Nick P. Defense signaling triggered by flg22 and harpin is integrated into a different stilbene output in Vitis cells. PLoS ONE, 2012, 7(7): e40446 CrossRef
  86. Sang S., Li X., Gao R., You Z., Lü B., Liu P., Ma Q., Dong H. Apoplastic and cytoplasmic location of harpin protein Hpa1Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol. Biol., 2012, 79(4-5): 375-391 CrossRef
  87. Pavli O.I., Kelaidi G.I., Tampakaki A.P., Skaracis G.N. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS ONE, 2011, 6(3): e17306 CrossRef
  88. Dong H.-P., Peng J., Bao Z., Meng X., Bonasera J.M., Chen G., Beer S.V., Dong H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology, 2004, 136(3): 3628-3638 CrossRef
  89. Chen L., Zhang S.-J., Zhang S.-S., Qu S., Ren X., Long J., Yin Q., Qian J., Sun F., Zhang C. Wang L., Wu X., Wu T., Zhang Z., Cheng Z.,  Hayes M.,  Beer S.V.,  Dong H. A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology,2008, 98(7): 792-802 CrossRef
  90. Wang D., Wang Y., Fu M., Mu S., Han B., Ji H., Cai H., Dong H., Zhang C. Transgenic expression of the functional fragment Hpa110-42 of the harpin protein Hpa1 imparts enhanced resistance to powdery mildew in wheat. Plant Disease, 2014, 98(4): 448-455 CrossRef
  91. Sands L.B., Cheek T., Reynolds J., Ma Y., Berkowitz G.A. Effects of harpin and flg22 on growth enhancement and pathogen defense in Cannabis sativa seedlings. Plants, 2022, 11(9): 1178 CrossRef
  92. Chang X., Seo M., Takebayashi Y., Kamiya Y., Riemann M., Nick P. Jasmonates are induced by the PAMP flg22 but not the cell death-Inducing elicitor harpin in Vitis rupestris. Protoplasma, 2017, 254(1): 271-283 CrossRef
  93. Joshi J.B., Senthamilselvi D., Maupin-Furlow J.A., Uthandi S. Microbial protein elicitors in plant defense. In: Microbial biocontrol: sustainable agriculture and phytopathogen management. A. Kumar (ed.). Springer, Cham, 2022 CrossRef
  94. Dong H., Delaney T.P., Bauer D.W., Beer S.V. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J., 1999, 20(2): 207-215 CrossRef 
  95. Shoi M.S., Kim W., Lee C., Oh C.S. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. MPMI, 2013, 26(10): 1115-1122 CrossRef
  96. Zhang N., Zhou S., Yang D., Fan Z. Revealing shared and distinct genes responding to JA and SA signaling in Arabidopsis by meta-analysis. Front. PlantSci., 2020, 11: 908 CrossRef
  97. Skabkin M.A., Skabkina O.V., Ovchinnikov L.P. Uspekhi biologicheskoy khimii, 2004, 44: 3-52 (in Russ.).
  98. Eshwar A.K., Guldimann C., Oevermann A., Tasara T. Cold-shock domain family proteins (Csps) are involved in regulation of virulence, cellular aggregation, and flagella-based motility in Listeria monocytogenes. Front. Cell. Infect. Microbiol., 2017, 7: 453 CrossRef
  99. Felix G., Boller T. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. Journal of Biological Chemistry, 2003, 278(8): 6201-6208 CrossRef
  100. Wang L., Albert M., Einig E., Fürst U., Krust D., Felix G. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2016, 2: 16185 CrossRef
  101. Djavakhia V.G., Nikolaev O.N., Voinova T.M., Battchikova N.A., Korpela T., Khomutov R.M. DNA sequence of gene and amino acid sequence of protein from Bacillus thuringiensis, which induces nonspecific resistance of plants to viral and fungal diseases. Journal of Russian Phytopathological Society, 2000, 1: 75-81.
  102. Shcherbakova L.A. Some natural proteinaceous and polyketide compounds in plant protection and their potential in green consumerization. In: Natural products in plant pest management. N.K. Dubey (ed.). CABI International, Boston, 2011 CrossRef
  103. Kromina K.A., Dzhavakhiya V.G. Molekulyarnaya genetika, mikrobiologiya i virusologiya, 2006, 1: 31-34 (in Russ.).
  104. de Wit P.J., Laugé R., Honée G., Joosten M.H., Vossen P., Kooman-Gersmann M., Vogelsang R., Vervoort J.J. Molecular and biochemical basis of the interaction between tomato and its fungal pathogen Cladosporium fulvum. Antonie Van Leeuwenhoek, 1997, 71(1-2): 137-141 CrossRef
  105. Ökmen B., de Wit P.J.G.M. Cladosporium fulvum-tomato pathosystem: fungal infection strategy and plant responses. In: Molecular plant immunity. G. Sessa (ed.). John Wiley & Sons Ltd., West Sussex, 2013 CrossRef
  106. Wan J., Zhang X.-C., Neece D., Ramonell K.M., Clough S., Kim S.-Y., Stacey M.G., Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell,2008, 20(2), 471-481 CrossRef
  107. Liebrand T.W., van den Berg G.C., Zhang Z., Smit P., Cordewener J.H., America A.H., Sklenar J., Jones A.M., Tameling W.I., Robatzek S., Thomma B.P., Joosten M.H. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. USA, 2013, 110(24): 10010-10015 CrossRef
  108. Wulff B.B., Chakrabarti A., Jones D.A. Recognitional specificity and evolution in the tomato–Cladosporium fulvum pathosystem. MPMI,2009, 22(10): 1191-1202 CrossRef
  109. Sánchez-Vallet A., Saleem-Batcha R., Kombrink A., Hansen G., Valkenburg D.J., Thomma B.P., Mesters J.R. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife,2013, 2: e00790 CrossRef
  110. Thomma B.P., Nürnberger T., Joosten M.H. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell, 2011, 23(1): 4-15 CrossRef
  111. Kombrink A., Sanchez-Vallet A., Thomma B.P. The role of chitin detection in plant-pathogen interactions. Microbes Infect., 2011, 13(14-15): 1168-1176 CrossRef
  112. Rep M., van der Does H.C., Meijer M., van Wijk R., Houterman P.M., Dekker H.L., de Koster C.G., Cornelissen B.J.C. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 2004, 53(5): 1373-1383 CrossRef
  113. Takken F., Rep M. The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 2010, 11(2): 309-314 CrossRef
  114. Shcherbakova L., Odintsova T., Stakheev A., Fravel D. Zavriev S. Identification of a novel small cysteine-rich protein in the fraction from the biocontrol Fusarium oxysporum strain CS-20 that mitigates Fusarium wilt symptoms and triggers defense responses in tomato. Front. Plant Sci., 2015, 6: 1207 CrossRef
  115. Shcherbakova L.A., Nazarova T.A., Mikityuk O.D., Fravel D.R. Fusarium sambucinum isolate FS-94 690 induces resistance against Fusarium wilt of tomato via activation and priming of a salicylic acid-dependent signaling system. Russ. J. Plant Physiology, 2011, 58: 808-818 CrossRef
  116. Shcherbakova L.A., Nazarova T.A., Mikityuk O.D, Istomina E.A., Odintsova T.I. An extract purified from the mycelium of a tomato wilt-controlling strain of Fusarium sambucinum is able to protect wheat against Fusarium and common root rots. Pathogens, 2018, 7(3): 61 CrossRef
  117. Keates S.E., Kostman T.A., Anderson J.D., Bailey B.A. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis, Plant Physiology, 2003, 132(3): 1610-1622 CrossRef
  118. Oomea S., Raaymakersa T.M., Cabrala A., Samwela S., Böhm H., Albert I., Nürnberger T., van den Ackerveken G. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2014, 111(47): 16955-16960 CrossRef
  119. van't Slot K. A., van den Burg H.A., Kloks C.P., Hilbers C.W., Knogge W., Papavoine C.H. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel beta-sheet fold. Journal of Biological Chemistry, 2003, 278(46): 45730-45736 CrossRef
  120. Djonović S., Pozo M.J., Dangott L.J., Howell C.R., Kenerley C.M. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. MPMI, 2006, 19(8): 838-853 CrossRef
  121. Seidl V., Marchetti M., Schandl R., Allmaier G., Kubicek C.P. Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. The FEBS Journal, 2006, 273(18): 4346-4359 CrossRef
  122. Wang Y., Song J., Wu Y., Odeph M., Liu Z., Howlett B.J., Wang S., Yang P., Yao L., Zhao L., Yang Q. Eplt4 proteinaceous elicitor produced in Pichia pastoris has a protective effect against Cercosporidium sofinum infections of soybean leaves. Appl. Biochem. Biotechnol., 2013, 169(3): 722-737 CrossRef
  123. Ruocco M., Lanzuise S., Lombardi N., Woo S.L., Vinale F., Marra R., Varlese R., Manganiello G., Pascale A., Scala V., Turrà D., Scala F., Lorito M. Multiple roles and effects of a novel Trichoderma hydrophobin. MPMI, 2015, 28(2): 167-179 CrossRef
  124. Zhang W., Fraiture M., Kolb D., Löffelhardt B., Desaki Y., Boutrot F.F., Tör M., Zipfel C., Gust A.A., Brunner F. Arabidopsis receptor-like protein and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. The Plant Cell, 2013, 25(10): 4227-4241 CrossRef
  125. Zhang Y., Yang X., Liu Q., Qiu D., Zhang Y., Zeng H., Yuan J., Mao J. Purification of novel protein elicitor from Botrytis cinerea that induce disease resistance and drought tolerance in plants. Microbiological Research,2010, 165(2): 142-151 CrossRef
  126. Peng D.-H., Qiu D.-W., Ruan L.-F., Zhou C.-F., Sun M. Protein elicitor PemG1 from Magnaporthe grisea induces systemic acquired resistance (SAR) in plants. MPMI, 2011, 24(10): 1239-1246 CrossRef
  127. Chen M., Zeng H., Qiu D., Guo L., Yang X., Shi H., Zhou T., Zhao J. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS ONE, 2012, 7(5): e37654 CrossRef
  128. Kulye M., Liu H., Zhang Y., Zeng H., Yang X., Qiu D. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ., 2012, 35(12): 2104-2120 CrossRef
  129. Liu W.P., Zeng H.M., Liu Y.F., Yuan J.J., Qiu D.W. Expression of Alternaria tenuissima PeaT2 gene in Pichia pastoris and its function. Wei Sheng Wu Xue Bao, 2007, 47(4): 593-597.
  130. Mao J., Liu Q., Yang X., Long C., Zhao M., Zeng H., Liu H., Yuan J., Qiu D. Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Annals of Applied Biology, 2010, 156(3): 411-420 CrossRef
  131. Zhang W., Li H., Wang L., Xie S., Zhang Y., Kang R., Zhang M., Zhang P., Li Y., Hu Y., Wang M., Chen L., Yuan H., Ding S., Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. Molecular Plant Pathology, 2022, 23(2): 218-236 CrossRef
  132. Wang J., Liu S., Ren P., Jia F., Kang F., Wang R., Xue R., Yan X., Huang L. A novel protein elicitor (PeSy1) from Saccharothrix yanglingensis induces plant resistance and interacts with a receptor-like cytoplasmic kinase in Nicotiana benthamiana. Molecular Plant Pathology, 2023, 24(5): 436-451 CrossRef
  133. Tarallo M., McDougal R.L., Chen Z., Wang Y., Bradshaw R.E., Mesarich C.H. Characterization of two conserved cell death elicitor families from the Dothideomycete fungal pathogens Dothistroma septosporum and Fulvia fulva (syn. Cladosporium fulvum). Front. Microbiol., 2022, 13: 964851 CrossRef
  134. Xu Q., Hu S., Jin M., Xu Y., Jiang Q., Ma J., Zhang Y., Qi P., Chen G., Jiang Y., Zheng Y., Wei Y. The N-terminus of a Fusarium graminearum-secreted protein enhances broad-spectrum disease resistance in plants. Molecular Plant Pathology, 2022, 23(12): 1751-1764 CrossRef
  135. Wang S., Yang S., Dai K., Zheng W., Zhang X., Yang B., Ye W., Zheng X., Wang Y.The effector Fg62 contributes to Fusarium graminearum virulence and induces plant cell death. Phytopathol. Res.,2023, 5: 12 CrossRef
  136. Janků M., Činčalová L., Luhová L., Lochman J., Petřivalský M. Biological effects of oomycetes elicitins. Plant Prot. Sci., 2020, 56(1): 1-8 CrossRef
  137. Derevnina L., Dagdas Y.F., de la Concepcion J.C., Bialas A., Kellner R., Petre B., Domazakis E., Du J., Wu C. H., Lin X., Aguilera-Galvez C., Cruz-Mireles N., Vleeshouwers V.G., Kamoun S. Nine things to know about elicitins. New Phytol., 2016, 212 (4): 888-895 CrossRef
  138. Noman A., Aqeel M., Irshad M.K., Qari S.H., Hashem M., Alamri S., AbdulMajeed A.M., Al-Sadi A.M. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth. Critical Reviews in Biotechnology, 2020, 40(6): 821-832 CrossRef
  139. Qutob D., Huitema E., Gijzen M., Kamoun S. Variation in structure and activity among elicitins from Phytophthora sojae. Molecular Plant Pathology, 2003, 4(2): 119-124 CrossRef 
  140. Starý T., Satková P., Piterková J., Mieslerová B., Luhová L., Mikulík J., Kašparovský T., Petřivalský M., Lochman J. The elicitin β-cryptogein’s activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions. Planta, 2018, 249: 739-749 CrossRef
  141. Keller H., Bonnet P., Galiana E., Pruvot L., Friedrich L., Ryals J., Ricci P. Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. MPMI, 1996, 9: 696-703 CrossRef
  142. Kawamura Y., Hase S., Takenaka S., Kanayama Y., Yoshioka H., Kamoun S., Takahashi H. INF1 elicitin activates jasmonic acid- and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. Journal of Phytopathology, 2009, 157: 287-297 CrossRef
  143. Brunner F., Rosahl S., Lee J., Rudd J.J., Geiler C., Kauppinen S., Rasmussen G., Scheel D., Nürnberger T. Pep-13 a plant defense inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J., 2002, 21(24): 6681-6688 CrossRef
  144. Veit S., Worle J. M., Nurnberger T., Koch W., Seitz H.U. A novel protein elicitor (PaNie) from Pythium aphanidermatum induce duel defense responses in carrot and Arabidopsis. Plant Physiology, 2001, 127: 832-841.
  145. Frías M., González M., González C., Brito N. A 25-residue peptide from Botrytis cinerea xylanase BcXyn11A elicits plant defenses. Front. Plant Sci., 2019, 10: 474 CrossRef
  146. Mishura A.A., Sharma K., Misra R.S. Purification and characterization of elicitor protein from Phytophthora colocasiae and basic resistance in Colocasia esculenta. Microbiological Research, 2009, 64: 688-693 CrossRef
  147. Bar M., Sharfman M., Avni A. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling. Plant Signaling & Behavior, 2011, 6(3): 455-457 CrossRef
  148. Tundo S., Moscetti I., Faoro F., Lafond M., Giardina T., Favaron F., Sella L., D’Ovidio R. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat. Plant Science, 2015, 240: 161-169 CrossRef
  149. Noda J, Brito N, González C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol., 2010, 10: 38 CrossRef
  150. Ma Y., Han C., Chen J., Li H., He K., Liu A., Li D. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Molecular Plant Pathology, 2015, 16(1): 14-26 CrossRef
  151. Shumilina D., Krämer R., Klocke E., Dzhavakhiya V. MF3 (peptidyl-prolyl cis/trans isomerase of FKBP type from Pseudomonas fluorescens) — an elicitor of non-specific plant resistance against pathogens. Phytopathol. Pol., 2006, 41: 39-49.
  152. Struwe W.B., Robinson C.V. Relating glycoprotein structural heterogeneity to function in sights from native mass spectrometry. Current Opinion in Structural Biology, 2019, 58: 241-248 CrossRef
  153. Chen X.-L., Shi T., Yang J., Shi W., Gao X., Chen D., Xu X., Xu J.-R., Talbot N. J., Peng Y. L. N-glycosylation of effector proteins by an a-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell, 2014, 26(3): 1360-1376 CrossRef
  154. Takenaka S., Nakamura Y., Kono T., Sekiguchi H., Masunaka A., Takahashi H. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Molecular Plant Pathology, 2006, 7(5): 325-339 CrossRef
  155. Gust A.A., Biswas R., Lenz H.D., Rauhut T., Ranf S., Kemmerling B., Götz F., Glawischnig E., Lee J., Felix G., Nürnberger T. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. Journal of Biological Chemistry, 2007, 282(44): 32338-32348 CrossRef
  156. Jin Y., Zhao J.-H., Guo H.-S. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr. Opin. Virol., 2021, 46: 65-72 CrossRef
  157. Wang K.D., Empleo R., Nguyen T.T., Moffett P., Sacco M.A. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses. Molecular Plant Pathology, 2015, 16(5): 435-448 CrossRef
  158. Cai L., Dang M., Yang Y., Mei R., Li F., Tao X., Palukaitis P., Beckett R., Miller W.A., Gray S.M., Xu Y. Naturally occurring substitution of an amino acid in a plant virus gene-silencing suppressor enhances viral adaptation to increasing thermal stress. PLoS Pathog., 2023, 19(4): e1011301 CrossRef
  159. Pumplin N., Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol., 2013, 11(11): 745-760 CrossRef
  160. Dewen Q., Yijie D., Yi Z., Shupeng L., Fachao S. Plant immunity inducer development and application. MPMI, 2017, 30(5): 355-360 CrossRef
  161. Sokolov Yu. A. Izvestiya Natsional’noy akademii nauk Belarusi. Seriya khimicheskikh nauk, 2015, 4: 109-121 (in Russ.).
  162. Dzhavakhia V., Filippov F., Skryabin K., Voinova T., Kouznetsova M., Shulga O., Shumilina D., Kromina K., Pridanniko M., Battchikova N., Korpela T. Proteins inducing multiple resistance of plants to phytopathogens and pests. Intern. Pat. Classification: C07K 14/21. Intern. applic. number: PCT/FI2004/000766. Intern. Filing date: 17 December 2004 (17.12.2004). Priority data: 20031880 22 December 2003. Intern. Public. number: WO 2005/061533 A1
  163. Shen Y., Li J., Xiang J., Xiang J., Wang J., Yin K., Liu Q. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMBExpr., 2019, 9: 117 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)