PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.5.889eng

UDC: 635.563:581.1:631.588.5

Acknowledgements:
The research was carried out within the framework of the VIR State Task, topic number FGEM-2022-0003 “World resources of vegetable and melon crops of the VIR collection: effective ways to reveal the ecological and genetic patterns of the formation of diversity and the use of breeding potential”

 

MORPHOLOGICAL AND BIOCHEMICA VARIABILITY OF VIR GARDEN CRESS (Lepidium sativum L.) COLLECTION UNDER INTENSIVE LIGHT CULTURE

A.B. Kurina1, K.O. Zheleznova1, A.E. Solovieva1, N.G. Sinyavina2,
G.G. Panova2, A.M. Artemyeva1

1Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail nastya_n11@mail.ru, bezvestna88@gmail.com, alsol64@yandex.ru,
sinad@inbox.ru, gaiane@inbox.ru, akme11@yandex.ru (✉ corresponding author);
2Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail sinad@inbox.ru, gpanova@agrophys.ru

ORCID:
Zheleznova K.O. orcid.org/0000-0003-4017-6900
Sinyavina N.G. orcid.org/0000-0003-0378-7331
Kurina A.B. orcid.org/0000-0002-3197-4751
Panova G.G. orcid.org/0000-0002-1132-9915
Solovieva A.E. orcid.org/0000-0002-6201-4294
Artemyeva A.M. orcid.org/0000-0002-6551-5203

Final revision received August 09, 2022
Accepted September  11, 2023

The technology of intensive light culture (city farms, vertical farms, plant factories) is actively developing which allows fresh vatable products to be available throughout the year. The search for accessions of various crops that maximize their productive potential under these conditions is of great importance for improving the quality of plant products and breeding work. Among the early ripening crops, garden cress (Lepidium sativum L.) is of large interest, since it is characterized by a wide variability of forms that differ in economically valuable traits, primarily yield and biochemical composition. However, the influence of growing conditions characteristic of light culture on the manifestation of signs of productivity and quality in garden cress accessions that differ in ecological-geographical origin and botanical affiliation has been practically not studied. In this work, we for the first time carried out a comprehensive assessment of the variability of economically valuable traits of garden cress under conditions of intensive light culture. The purpose of our work was to study phenological, morphological, biochemical and economic characteristics in 72 accessions of garden cress of three varieties, var. latifolium DC., var. sativum Alef. and var. crispum (Medik.) DC. under conditions of intense light culture, and to identify accessions with valuable traits. Morphological description (height and diameter of the rosette, shape and size of leaves) and biochemical analysis were carried out at the stage of technical ripeness. Biochemical analysis included the determination of the content of dry matter, ascorbic acid, anthocyanins, chlorophylls and carotenoids. The variability of morphological, phenological and biochemical characteristics of garden cress under intensive light culture was determined. It was noted that the greatest variability was observed in the average plant weight (Cv = 40.3 %), yield (Cv = 38.3 %) and anthocyanin content (Cv = 42.5 %), other parameters were characterized by a middle degree of variability. Late-ripening accessions are characterized by late or slow bolting, larger plant weight (mean 3.6 g) and high dry matter content (mean 9.0 %), while early-ripening forms allow for more vegetations per year and accumulate more ascorbic acid (mean 32.8±5.7 mg/100 g). On average, among the studied accessions, the late-ripening accessions of var. latifolium from Iran (k-91) and Azerbaijan (k-112, k-125, k-131), as well as the accession of var. sativum from Iran (k-92) and the accession of var. crispum from Denmark (k-185), turned out to be productive. Statistically significant differences were found between the accessions and varieties in terms of the content of chlorophylls and carotenoids. The greatest variability in the content of carotenes was in the accessions of var. sativum (Cv = 24.7 %), in the content of anthocyanins was in the accessions of var. crispum (Cv = 44,7 %). The accessions of var. latifolium were generally characterized by a high content of the total chlorophylls (124.2±14.0 mg/100 g), carotenoids (37.3±4.4 mg/100 g), carotenes (6.1±0.6 mg/100 g), and β-carotene (5.0±0.6 mg/100 g). We identified accessions of garden cress that are of the greatest interest in terms of development rate, resistance to bolting and formed yield when grown under intensive light culture, as well as potential sources of economically valuable traits for further breeding and obtaining forms of garden cress that are most adapted to conditions of intensive light culture.

Keywords: Lepidium sativum L., garden cress, intensive light culture, productivity, ascorbic acid, chlorophylls, carotenoids, variability.

 

REFERENCES

  1. Soldatenko A.V., Pivovarov V.F., Kharchenko V.A., Ivanova M.I. Ovoshchi Rossii, 2019, 3: 7-14 CrossRef (in Russ.).
  2. Ludilov V.A. Ivanova M.I. Azbuka ovoshchevoda [Vegetable grower's ABCs]. Moscow, 2004 (in Russ.).
  3. Benke K., Tomkins B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 2017, 13(1): 13-26 CrossRef
  4. Al-Kodmany, K. The vertical farm: A review of developments and implications for the vertical city. Buildings, 2018, 8(2): 24 CrossRef
  5. Payen F. T., Evans D. L., Falagán N., Hardman C. A., Kourmpetli S., Liu L., et al. How much food can we grow in urban areas? Food production and crop yields of urban agriculture: A meta-analysis. Earth's Future, 2022, 10: e2022EF002748 CrossRef
  6. Plant factory: an indoor vertical farming system for efficient quality food production. Kozai T., G. Niu, M. Takagaki (eds.). Academic Press, 2019.
  7. Reddy R.V.S.K., Omprasad J., Janakiram T. Technological innovations in commercial high tech horticulture, vertical farming and landscaping. Int. J. Innov. Hortic., 2022, 11(1): 78-91 CrossRef
  8. Lubna F.A., Lewus D.C., Shelford T.J., Both A.-J. What you may not realize about vertical farming. Horticulturae, 2022, 8: 322 CrossRef
  9. Wong C. E., Teo Z. W. N., Shen L., Yu H. Seeing the lights for leafy greens in indoor vertical farming. Trends Food Sci. Technol., 2020, 106: 48-63 CrossRef
  10. Kozai T. Towards sustainable plant factories with artificial lighting (PFALs) for achieving SDGs. Int. J. Agric. & Biol. Eng. (IJABE), 2019, 12(5): 28-37 CrossRef
  11. Panova G.G., Udalova O.R., Kanash E.V., Galushko A.S., Kochetov A.A., Priyatkin N.S., Arkhipov M.V., Chernousov I.N. Zhurnal tekhnicheskoy fiziki, 2020, 90(10): 1633-1639 CrossRef (in Russ.).
  12. Egorova K. V., Sinyavina N. G., Artemyeva A. M., Kocherina N. V., Chesnokov Y. V. QTL Analysis of the Content of Some Bioactive Compounds in Brassica rapa L. Grown under Light Culture Conditions. Horticulturae, 2021, 7(12): 583 CrossRef
  13. Artemyeva A.M., Sinyavina N.G., Panova G.G., Chesnokov Yu.V. Biological features of Brassica rapa L. vegetable leafy crops when growing in an intensive light culture. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(1): 103-120 CrossRef
  14. Kochetov A.A., Mirskaya G.V., Sinyavina N.G., Egorova K.V. Rossiyskaya sel’skokhozyaystvennaya nauka, 2021, 6: 29-37 CrossRef (in Russ.).
  15. Kurina A.B., Artem’eva A.M., Sinyavina N.G., Kochetov A.A., Panova G.G. Kartofel’ i ovoshchi, 2019, 4: 26-29 CrossRef (in Russ.).
  16. Hayashi E., Kozai T. Phenotyping- and AI-Based Environmental Control and Breeding for PFAL. SmartPlantFactory, 2018, 405-411 CrossRef
  17. Watson A., Ghosh S., Williams M. J., Cuddy W. S., Simmonds J., Rey M. D., Hickey L. T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants, 2018, 4: 23-29 CrossRef
  18. Ghosh S., Watson A., Gonzalez-Navarro O. E., Ramirez-Gonzalez R. H., Yanes L., Hickey L.T. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc., 2018, 13 (12): 2944-2963 CrossRef
  19. Sinyavina N.G., Kochetov A.A., Egorova K.V., Kocherina N.V., Chesnokov Yu.V. Genetika, 2022, 58(6): 668-677 CrossRef (in Russ.).
  20. Fotev Yu.V., Artem’eva A.M., Zvereva O.A. Vavilovskiy zhurnal genetiki i selektsii, 2021, 25(4): 442-447 CrossRef (in Russ.).
  21. Ramirez D., Abellán-Victorio A., Beretta V., Camargo A., Moreno D.A. Functional ingredients from Brassicaceae species: overview and perspectives. Int. J. Mol. Sci., 2020, 21(6): 1998 CrossRef
  22. Aqafarini A., Lotfi M., Norouzi M., Karimzadeh G. Induction of tetraploidy in garden cress: morphological and cytological changes. Plant Cell, Tissue and Organ Culture (PCTOC), 2019, 137(3): 627-635 CrossRef
  23. Bedassa T., Eshete M. Genetic divergence analysis of garden cress (Lepidium sativum L.). Int. J. Biodivers. Conserv., 2013, 5(11): 770-774 CrossRef
  24. Tsiunel’ M. M. Kress-salat. Gavrish, 2006, 6: 8-9 (in Russ.).
  25. Sharma A. A comprehensive review on pharmacological properties of garden cress (Lepidium sativum) seeds. Res. in Pharm. Sci., 2020, 10: 13-18 CrossRef
  26. Bansal D., Bhasin P., Yadav O., Punia A. Assessment of genetic diversity in Lepidium sativum (Chandrasur) a medicinal herb used in folklore remedies in India using RAPD. Journal, Genetic Engineering & Biotechnology, 2012, 10(1): 39-45 CrossRef
  27. Sabaghnia N., Ahadnezhad A., Janmohammdi M. Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genet. Resour. Crop Evol., 2015, 62(5): 733-745 CrossRef
  28. Girenko M.M., Korovina O.N., Dorofeev V.F. Kul’turnaya flora SSSR. Tom 12. Listovye ovoshchnye rasteniya (sparzha, reven’, shchavel’, shpinat, portulak, kress-salat, ukrop, tsikoriy, salat) [Cultivated flora of the USSR. Volume 12. Leafy vegetable plants (asparagus, rhubarb, sorrel, spinach, purslane, watercress, dill, chicory, lettuce)]. Leningrad, 1988 (in Russ.).
  29. Bedassa T., Andargie M., Eshete M. Genetic variability and association among yield, yield related traits and oil content in Ethiopian garden cress (Lepidium sativum L.) genotypes. J. Plant Breed. Crop Sci., 2013, 7(5): 141-149 CrossRef
  30. Bespal’ko L.V., Molchanova A.V., Pinchuk E.V., Sirota S.M., Kozar’ E.G. Sel’skokhozyaystvennye nauki, 2017, 7-1(33): 240-244 (in Russ.).
  31. Sat I.G., Yildirim E., Turan M., Demirbas M. Antioxidant and nutritional characteristics of garden cress (Lepidium sativum). Acta Sci. Polonorum-Hort. Cultus, 2013, 12: 173-179.
  32. Malar J., Chairman K., Singh A. R. J., Vanmathi J. S., Balasubramanian A., Vasanthi K. Antioxidative activity of different parts of the plant Lepidium sativum Linn. Biotechnology Reports, 2014, 3: 95-98 CrossRef
  33. Chizhikova O.G. Izvestiya DVFU. Ekonomika i upravlenie, 2017, 1: 113-118 (in Russ.).
  34. Ajdanian L., Mehdi Babaei, Hossein Aroiee. Investigation of photosynthetic effects, carbohydrate and starch content in cress (Lepidium sativum) under the influence of blue and red spectrum. Heliyon, 2020, 6: e05628 CrossRef
  35. Hassan L.G., Hassan S.W., Hashim T., Umar K.J., Sani N.A. Determination of nutritive values of garden cress (Lepidium Sativum L.) leaves. Bayero Journal of Pure and Applied Sciences, 2012, 4: 18-23 CrossRef
  36. Pinchuk E.V., Bespal’ko L.V., Kozar’ E.G., Balashova I.T., Sirota S.M., Shevchenko T.E. Ovoshchi Rossii, 2019, 3: 45-53 CrossRef (in Russ.).
  37. Ajdanian L., Babaei M., Aroiee H. The growth and development of cress (Lepidium sativum) affected by blue and red light. Heliyon, 2019, 5(7): e02109 CrossRef
  38. Sharma S., Agarwal N. Nourishing and healing prowess of garden cress (Lepidium sativum Linn.) — a review. Indian Journal of Natural Products and Resources, 2011, 2: 292-297.
  39. Buso P., Manfredini S., Reza Ahmadi-Ashtiani H., Sciabica S., Buzzi R., Vertuani S., Baldisserotto A. Iranian medicinal plants: from ethnomedicine to actual studies. Medicina, 2020, 56(3): 97 CrossRef
  40. Jahani S., Heidari Z., Azami M., Moudi B. Comparison of anticancer effects of hydroalcoholic extracts of Camellia sinensis and Lepidium sativum L on hela cell line. International Journal of Cancer Management, 2020, 13(11): e98913 CrossRef
  41. Rajab W.J., Ali L.H. Efficacy of Lepidium sativum seeds against carbon tetra chloride induced hepatotoxicity in rats. Biochemical and Cellular Archives, 2020, 20(1): 1141-1146.
  42. Painuli S., Quispe C., Herrera-Bravo J., Semwal P., Martorell M., Almarhoon Z.M., Seilkhan A., Ydyrys A., Rad J.S., Alshehri M.M., Daştan S.D., Taheri Y., Calina D., Cho W.C. Nutraceutical profiling, bioactive composition, and biological applications of Lepidium sativum L. Oxid. Med. Cell Longev., 2022, 2022: 2910411 CrossRef
  43. Al-Yahya M., Mossa J., Ageel A., Rafatullah S. Pharmacological and safety evaluation studies on Lepidium sativum L., Seeds. Phytomedicine, 1994, 1(2): 155-159 CrossRef
  44. Yadav Y.C., Srivastav D., Seth A., Saini V., Balaraman R., Ghelani T.K. In vivo antioxidant potential of Lepidium sativum L. seeds in albino rats using cisplatin induced nephrotoxicity. International Journal of Phytomedicine, 2010, 2(3): 292-298.
  45. Patel U., Kulkarni M., Undale V., Bhosale A. Evaluation of diuretic activity of aqueous and methanol extracts of Lepidium sativum garden cress (Cruciferae) in rats. Tropical Journal of Pharmaceutical Research, 2009, 8(3): 215-219 CrossRef
  46. Paranjape A.N., Mehta A.A. A study on clinical efficacy of Lepidium sativum seeds in treatment of bronchial asthma. Iranian Journal of Pharmacology & Therapeutic, 2006, 5(1): 55-59.
  47. Raval N.D., Ravishankar B., Ashok B. Anti-inflammatory effect of Chandrashura (Lepidium sativum Linn.) an experimental study. AYU (An International Quarterly Journal of Research in Ayurveda), 2013, 34(3): 302 CrossRef
  48. Panova G.G., Chernousov I.N., Udalova O.R., Aleksandrov A.V., Karmanov I.V., Anikina L.M., Sudakov V.L., Yakushev V.P. Doklady Rossiyskoy akademii sel’skokhozyaystvennykh nauk, 2015, 4: 17-21 (in Russ.).
  49. Ivanova K.V., Girenko M.M. Metodicheskie ukazaniya po izucheniyu malorasprostranennykh ovoshchnykh kul’tur [Guidelines for studying less common vegetable crops]. Leningrad, 1968 (in Russ.).
  50. Ermakov A.I., Arasimovich V.V., Yarosh N.P. Metody biokhimicheskogo issledovaniya rasteniy [Methods of biochemical research of plants]. Leningrad, 1987 (in Russ.).
  51. StatSoft Inc., Electronic Statistics Textbook (Electronic Version), StatSoft, Inc., Tulsa, 2013. Available: http://www.statsoft.com/textbook. No date.
  52. Nasledov A.D. Matematicheskie metody psikhologicheskogo issledovaniya. Analiz i interpretatsiya dannykh [Mathematical methods of psychological research. Data analysis and interpretation]. St. Petersburg, 2012.
  53. Pivovarov V.F., Dobrutskaya E.G. Ekologicheskie osnovy selektsii i semenovodstva ovoshchnykh kul’tur [Ecological foundations of breeding and seed production of vegetable crops]. Moscow, 2000 (in Russ.).
  54. Zhuchenko A.A. Adaptivnyy potentsial kul’turnykh rasteniy [Adaptive potential of cultivated plants]. Kishinev, 1988 (in Russ.).
  55. Ludilov V.A., Ivanova M.I. Redkie i malorasprostranennye ovoshchnye kul’tury (biologiya, vyrashchivanie, semenovodstvo) [Rare and less common vegetable crops (biology, cultivation, seed production)]. Moscow, 2009 (in Russ.).
  56. Kumar V., Kumar Yadav H. Assessment of genetic diversity in Lepidium sativum L. using inter simple sequence repeat (ISSR) marker. Physiol. Mol. Biol. Plants, 2019, 25(2): 399-406 CrossRef
  57. Belova A.Yu., Murashev S.V., Verzhuk V.G. Nauchnyy zhurnal NIU ITMO. Ser. Protsessy i apparaty pishchevykh proizvodstv, 2012, 1(13): 13 (in Russ.).
  58. Zheleznova K.O., Solov’eva A.E., Kurina A.B. Tezisy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aromaticheskie i lekarstvennye rasteniya: introduktsiya, selektsiya, agrotekhnika, biologicheski aktivnye veshchestva, vliyanie na cheloveka» (Yalta, 2021 god) [Proc. Int. Conf. «Aromatic and medicinal plants: introduction, selection, agricultural technology, biologically active substances, impact on humans (Yalta, 2021)»]. Simferopol’, 2021: 43 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)