PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.5.927eng

UDC: 636.085.19:636.086.1/.3:632.4

Acknowledgements:
The work was carried out in accordance with the State Task on the topic: FGUG-2022-0008 “To scientifically substantiate and develop new methods, tools and technologies for ensuring sustainable veterinary and sanitary welfare of animal husbandry”, R&D registration number in CITIS 122042700106-1.

 

PRODUCTION OF OCHRATOXIN A AND CITRININ BY Penicillium verrucosum AND P. viridicatum FROM GRAIN AND HERBAL FODDER COLLECTED IN VARIOUS REGIONS OF RUSSIA

G.P. Kononenko , E.A. Piryazeva, E.V. Zotova, A.A. Burkin

All-Russian Research Institute of Veterinary Sanitation, Hygiene, and Ecology — Branch of FSC ARRIEV RAS, 5, Zvenigorodskoe sh., Moscow, 123022 Russia, e-mail kononenkogp@mail.ru (✉ corresponding author), piryazeva01@yandex.ru, zotelena63@mail.ru, aaburkin@mail.ru

ORCID:
Kononenko G.P. orcid.org/0000-0002-9144-615X
Zotova E.V. orcid.org/0000-0002-9144-615X
Piryazeva E.A. orcid.org/0000-0002-9144-615X
Burkin A.A. orcid.org/0000-0002-5674-2818

Final revision received August 04, 2023
Accepted October 02, 2023  

Over the past decades, significant progress has been made in elucidating the prevalence of fungi Penicillium subgenus Penicillium in the environment and their ability to produce a wide range of metabolites with toxic effects (T. Rundberget et al., 2004; J. O’Callaghanet al., 2013; M. Schmidt-Heydtet al., 2015). In a number of European countries, one of the species, the P. verrucosum Dierckx has been shown to predominate on cereals, and a direct relationship has been revealed between the grain infestation and the frequency of detection of nephrotoxins (F. Lund, J.C. Frisvad, 2003; M. Lindblad et al., 2004; S. Elmholt, P.H. Rasmussen, 2005). However, the available data on toxins produced by this fungus in grain products and feeds remain very limited (M.R. Bragulat et al., 2008; V. Koteswara Rao et al., 2011). In Russia, a series of publications has recently been devoted to the toxigenic potential of microscopic fungi affecting feed, including 11 species of Penicillium (A.A. Burkin et al., 2019; G.P. Kononenko et al., 2021). The whole set of cultural and morphological features previously accepted for the taxon P. viridicatum Westling (K.B. Raper et al., 1949), according to Russian researchers, turned out to be characteristic of isolates occurring with a frequency of 20 % in wheat, barley, oats, rye (E.A. Piryazeva, L.S. Malinovskaya, 2014) and with 1.3 % in dry grass feeds (hay, straw) (E.A. Piryazeva, 2017). Here, for the first time, it is shown that a set of isolates differing in terms of sites and years of collecting is mostly P. verrucosum, and its capability of toxigenic production in vitro is assessed. In addition, this work is the first in which P. verrucosum Dierckx and P. viridicatum Westling were discovered among isolates previously assigned to the taxon (according to K.B. Raper et al., 1949), and the characteristics of their toxin production in vitro were assessed. The aim of the study was to evaluate ochratoxin A (OA) and citrinin (CIT) production on grain substrates in a set of 33 isolates from grain and fodder sampled in various Russian regions in different years and deposited into a local collection as Penicillium viridicatum Westling. Prior to toxin production assessment, the modern morphological criteria were applied to check taxonomic assignment of the isolates tested. Species identification was performed in accordance with the guidelines (J.C. Frisvad, R.A. Samson, 2004). Cultures were grown on sucrose agar with yeast extract (YES), sucrose agar with creatine (CREA), Chapek agar with yeast autolysate extract (CYA) for 7 days at 25 °С and 30 °С. The acidity index was determined by the change in the CREA medium colour. Fungal inoculum was grown on Chapek-Dox agar for 7-10 days at 23-25 °С. After culturing fungi on moistened rice grain (7 days, 25 °С, without lighting), the OA and CIT content in biomass extracts was measured by indirect competitive enzyme immunoassay (ELISA) using certified commercial test systems (VNIIVSHE, Russia). According to the growth rate, colony pigmentation, acidity reaction, and the morphological traits when grown on a panel of 3 test media, 8 cultures were found to be P. viridicatum and 25 cultures were identified as P. verrucosum. None of P. viridicatum strains formed OA and/or CIT. All strains of P. verrucosum produced CIT and some of them OA. In 17 strains implementing the biosynthesis of both metabolites, the accumulation of CIT in the sample on average was about 15 times higher than OA. OA levels above 10 µg/g were detected in only 12 % of producers. The absolute majority (92 %) of P. verrucosum strains accumulated CIT in amounts of more than 10 µg/g, of which 48 % of 100 µg/g or more, which allows us to classify them as highly active producers. The data obtained suggest the involvement of the P. verrucosum species in co-contamination of OA and CIT of domestic grain products and herbal feeds.

Keywords: Penicillium verrucosum, P. viridicatum, grain products, herbal feeds, ochratoxin A, citrinin, ELISA.

 

REFERENCES

  1. Rundberget T., Skaar I., Flåøyen A. The presence of Penicillium and Penicillium mycotoxins in food wastes. International Journal of Food Microbiology,2004, 90(2): 181-188 CrossRef
  2. Abbas A., Coghlan A., O’Callaghan J., Garcia-Estrada C., Martin J.F., Dobson A.D.W.Functional characterization of the polyketide synthase gene required for ochratoxin A biosynthesis in Penicillium verrucosum. International Journal of Food Microbiology, 2013, 161(3): 172-181 CrossRef
  3. Schmidt-Heydt M., Stoll D., Schütz P., Geisen R.Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. International Journal of Food Microbiology, 2015, 192: 1-6 CrossRef
  4. Lund F., Frisvad J.C.Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A. Journal of Applied Microbiology, 2003, 95(5): 1117-1123 CrossRef
  5. Lindblad M., Johnsson P., Jonsson N., Lindqvist R., Olsen M.Predicting noncompliant levels of ochratoxin A in cereal grain from Penicillium verrucosum counts. Journal of Applied Microbiology, 2004, 97(3): 609-616 CrossRef
  6. Elmholt S., Rasmussen P.H.Penicillium verrucosum occurrence and ochratoxin A contents in organically cultivated grain with special reference to ancient wheat types and drying practice. Mycopathologia, 2005, 159(3): 421-432 CrossRef
  7. Bragulat M.R., Martinez E., Castellá G., Cabañes F.J. Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. International Journal of Food Microbiology, 2008, 126(1-2): 43-48 CrossRef
  8. Koteswara Rao V., Shilpa P., Girisham S., Reddy S.M. Incidence of mycotoxigenic penicilla in feeds of Andhra Pradesh, India. International Journal for Biotechnology and Molecular Biology Research, 2011, 2(2): 46-50.
  9. Raper K.B., Thom C., Fennel D.I. A manual of the Penicillia. The Williams & Wilkins Comp., Baltimore, 1949.
  10. Perez Garcia R., Tuite J.F. Screening of Penicillium isolates from shelled corn for production of mycotoxins. Philippine Agriculturist, 1985, 68(4): 453-459.
  11. Stenwig H., Liven E. Mycological examination of improperly stored grains. Acta Agriculturae Scandinavica, 1988, 38(2): 199-205 CrossRef
  12. Van Walbeek W., Scott P.M., Harwig J., Lawrence J. W. Penicillium viridicatum Westling: a new source of ochratoxin A. Canadian Journal of Microbiology, 1969, 15(11): 1281-1285 CrossRef
  13. Krogh P., Hasselager E., Friis P. Studies of fungal nephrotoxicity. II. Isolation of two nephrotic compounds from Penicillium viridicatum Westling: Citrinin and oxalic acid. Acta Pathologica Microbioogica Scandinavica Section B Microbiology and Immunology, 1970, 78: 401-413 CrossRef
  14. Pitt J.I. Penicillium viridicatum, Penicillium verrucosum, and production of ochratoxin A. Applied and Environmental Microbiology, 1987, 53(2): 266-269 CrossRef
  15. Larsen T.O., Svendsen A., Smedsgaard J. Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Applied and Environmental Microbiology, 2001, 67(8): 3630-3635 CrossRef
  16. Cabañes F.J., Bragulat M.R., Castellá G. Ochratoxin A producing species in the genus Penicillium. Toxins, 2010, 2: 1111-1120 CrossRef
  17. Burkin A.A., Kononenko G.P., Piryazeva E.A. Toxin-producing fungi of the genus penicillium in coarse fodders. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(3): 616-625 CrossRef
  18. Kononenko G.P., Piryazeva E.A., Burkin A.A. Mikologiyaifitopatologiya, 2021, 55(4): 285-290 CrossRef (in Russ.).
  19. Piryazeva E.A., Malinovskaya L.S. Rossiyskiy zhurnal «Problemy veterinarnoy sanitarii, gigieny i ekologii», 2014, 1(11): 39-43 (in Russ.).
  20. Piryazeva E.A. Rossiyskiy zhurnal «Problemy veterinarnoy sanitarii, gigieny i ekologii», 2017, 4(24): 42-45 (in Russ.).
  21. Frisvad J.C., Samson R.A. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology, 2004, 49: 1-174.
  22. Houbraken J., Kocsubé S., Visagie C.M., Yilmaz N., Wang X.C., Meijer M., Kraak B., Hubka V., Bensch K., Samson R.A., Frisvad J.C. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Studies in Mycology, 2020, 95: 5-169 CrossRef
  23. Visagie C.M., Houbraken J., Frisvad J.C., Hong S.B., Klaassen C.H.W., Perrone G., Siefert K.A., Varga J., Yaguchi T., Samson R.A. Identification and nomenclature of the genus Penicillium. Studies in Mycology, 2014, 78(1): 343-371 CrossRef
  24. Antipova T.V., Zhelifonova V.P., Kozlovskiy A.G. Voprosy biologicheskoy, meditsinskoy i farmatsevticheskoy khimii, 2019, 22(7): 11-25 CrossRef
  25. Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Studies in Mycology, 2004, 49: 201-241.
  26. Zhelifonova V.P., Antipova T.V., Ozerskaya S.M., Kochkina G.A., Kozlovskiy A.G.Mikrobiologiya, 2009, 78(3): 393-398 (in Russ.).
  27. Wawrzyniak J., Waśkiewicz A. Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Additives & Contaminants: Part A, 2014, 31(1): 139-148 CrossRef
  28. Frisvad J.C., Lund F., Elmholt S. Ochratoxin A producing Penicillium verrucosum isolates from cereals reveal large AFLP fingerprinting variability. Journal of Applied Microbiology, 2005, 98(3): 684-692 CrossRef
  29. Kononenko G.P., Burkin A.A. Immunologiya, allergologiya, infektologiya, 2010, 1: 196 (in Russ.).
  30. Kononenko G.P., Burkin A.A. Peculiarities of feed contamination with citrinin and ochratoxin A. Agricultural Sciences, 2013, 4(1): 34-38 CrossRef
  31. Otero C., Arredondo C., Echeverria-Vega A., Gordillo-Fuenzalida F. Penicillium spp. mycotoxins found in food and feed and their health effects. World Mycotoxin Journal, 2020, 13(3): 323-343 CrossRef
  32. Toju H., Tanabe A.S., Yamamoto S., Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE, 2012, 7: e40863 CrossRef
  33. Houbraken J., Visagie C.M., Meijer M., Frisvad J.C., Busby P.E., Pitt J.I., Seifert K.A., Louis-Seize G., Demirel R., Yilmaz N., Jacobs K., Christensen M., Samson R.A. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Studies in Mycology, 2014, 78: 373-451 CrossRef
  34. Burkin A.A., Kononenko G.P. Mycotoxin contamination of meadow grasses in European Russia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(4): 503-512 CrossRef
  35. Schmidt-Heydt M., Magan N., Geisen R.Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiology Letters, 2008, 284 (2): 142-149 CrossRef
  36. Schmidt-Heydt M., Bode H., Raupp F., Geisen R. Influence of light on ochratoxin biosynthesis by Penicillium. Mycotoxin Research, 2010, 26(1): 1-8 CrossRef
  37. Kokkonen M., Jestoi M., Rizzo A. The effect of substrate on mycotoxin production of selected Penicillium strains. International Journal of Food Microbiology, 2005, 99 (2): 207-214 CrossRef
  38. Kononenko G.P., Burkin A.A. Toxins of micromycetes in generative organs of plants of the family Fabaceae. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(5): 968-978 CrossRef
  39. Varga J., Rigó K., Lamper C., Téren J., Szabó G. Kinetics of ochratoxin A production in different Aspergillus species. Acta Biologica Hungarica, 2002, 53(3), 381-388 CrossRef
  40. Chu F.S. Studies on ochratoxins. Critical Reviews in Toxicology, 1974, 2(4): 499-524 CrossRef
  41. Perrone G., Susca A. Penicillium species and their associated mycotoxins. Methods in Molecular Biology, 2017, 1542: 107–-119 CrossRef
  42. Castellá G., Larsen T.O., Cabañes J., Schmidt H., Alboresi A., Niessen L., Färber P., Gelsen R. Molecular characterization of ochratoxin A producing strains of the genus Penicillium. Systematic and Applied Microbiology,2002, 25 (1): 74-83 CrossRef
  43. Geisen R., Schmidt-Heydt M., Touhami N., Himmelsbach A.New aspects of ochratoxin A and citrinin biosynthesis in Penicillium. Current Opinion in Food Science, 2018, 23: 23-31 CrossRef
  44. Geisen R., Schmidt-Heydt M., Stoll D., Touhami N. Aspects of the occurrence, genetics, and regulation of biosynthesis of the three food relevant Penicillium mycotoxins: ochratoxin A, citrinin, and patulin. In. Physiology and Genetics, 2nd Edition. The Mycota XV. T. Anke, A. Schüffler (eds.). Springer International Publishing, AG, 2018: 413-433 CrossRef
  45. Sharov T.N., Grishina M.A., Tkachenko G.A., Shpak I.M. Problemy meditsinskoy mikologii, 2012, 14(2): 18-24 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)