PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.5.821eng

UDC: 631:575.8:573.7

 

DOMESTICATION IS THE PROPRIETARY CASE OF EVOLUTION: ABOUT THE UNIVERSALITY OF PRINCIPLES AND ELEMENTS (review)

V.I. Glazko, G.Yu. Kosovsky, T.T. Glazko ✉

Afanas’ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, 6, ul. Trudovaya, pos. Rodniki, Ramenskii Region, Moscow Province, 140143 Russia, e-mail vigvalery@gmail.com, gkosovsky@mail.ru, tglazko@rambler.ru (✉ corresponding author)

ORCID:
Glazko V.I. orcid.org/0000-0003-4242-2239
Glazko T.T. orcid.org/0000-0002-0520-7022
Kosovsky G.Yu. orcid.org/0000-0003-1889-6063

Final revision received July 20, 2023
Accepted September 26, 2023

Accelerating changes of the biosphere in which the transformation of human ac-tivity into a geological force plays an essential role (V.I. Vernadsky, 1944) generate  special attention to the  management of the genetic flows of domesticated plant and animal species as the basis for existence of the modern humanity. As N.I. Vavilov noted, domestication is “an experimental evolution .... in order to manage it, a historical understanding of the evolutionary process is necessary” (N.I. Vavilov, 1987). The main mechanism of natural and artificial selection consists in the preferential reproduction of the individuals most adapted to the proposed selection conditions, that is, having reproductive success and ensuring the preservation of offspring, which underlies the “self-domestication” of some mammalian species, including humans (L. Raviv et al., 2023). Intraspecific and interspecific differentiation and cooperation for performing population reproduction tasks have been described both in animals (A.M.M. Rodrigues et al., 2023; M.A. Zeder, 2012) and in plants (R. Sharifi, C.M. Ryu, 2021). On the example of prokaryotes, it was shown that culturing under different conditions leads to a significant differentiation in cell behavior (t.e., in colony formation) in generations, and these changes are irreversible, i.e., evolution does not go backwards (“discrimination of relatives”) (O. Rendueles et al., 2015). In multicellular organisms, a significant contribution to the irreversibility of evolution is made by symbionts, the “cooperants” at the cellular (E. Rosenberg et al., 2010) and genomic (M. Ramakrishnan et al., 2021) levels. In domesticated plants and animals, most of the genome is occupied by mobile genetic elements — transposons (TE) and the products of their recombination (D. Almojil et al., 2021). Autonomous TE are descendants of exogenous viruses and sources of the main components of networks regulating gene expression profiles that affect hybridization, stress reactivity (K. Mukherjee, L.L. Moroz, 2023). Despite significant differences in the dominance of TE variants, there are certain similarities between TEs in terms of participation in basic biological processes in plants and animals, such as the formation of interphase nuclear architecture, motifs for transcription regulatory factors, etc. (Y. Qiu, C. Köhler, 2020). It should be noted that the early stages of evolution were based on the differentiation and cooperation of protobiopolymers (RNA, proteins, lipids, carbohydrates) (Y. Shi et al., 2023), prokaryotes and eukaryotes (J. Brueckner, W.F. Martin, 2020; C. Al Jewari, S.L. Baldauf, 2023). The data obtained indicate that differentiation and cooperation are universal elements of the entire evolutionary process, in which mutualistic relationships between a multicellular organism, its microbiota, viruses and their descendants play a key role. This circumstance must be taken into account in the search for methods of managing the genetic flows of human-domesticated species in order to preserve and improve them.  

Keywords: reproductive success, mutualism, domestication, transposons, microbiota, gene regulatory networks.

 

REFERENCES

  1. Vavilov N.I. Teoreticheskie osnovy selektsii [Theoretical foundations of selection]. Moscow, 1987 (in Russ.).
  2. Revenkova A.I. Nikolay Ivanovich Vavilov: 1887-1943 [Nikolai Ivanovich Vavilov: 1887-1943]. Moscow, 1962 (in Russ.).
  3. Glazko V.I., Ivanitskaya L., Cheshko V. Antropotsen. Filosofiya biotekhnologii. Stabil’naya adaptivnaya strategiya Homo sapiens, evolyutsionnyy risk i evolyutsionnaya semantika [Anthropocene. Philosophy of biotechnology. Stable adaptive strategy of Homo sapiens, evolutionary risk and evolution semantics]. Moscow, 2018 (in Russ.).
  4. Vernadskiy V.I. Uspekhi sovremennoy biologii, 1944, 18(2): 113-120 (in Russ.).
  5. Guo Z., Zhang L., Li Y. Increased dependence of humans on ecosystem services and biodiversity. PLoS ONE, 2010, 5(10): e13113 CrossRef
  6. FAO, IFAD, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2020. Transforming food systems for affordable healthy diets. FAO, Rome, 2020 CrossRef
  7. Andersson L., Purugganan M. Molecular genetic variation of animals and plants under domestication. PNAS USA, 2022, 119(30): e2122150119 CrossRef
  8. Barnosky A.D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. PNAS USA, 2008, 105(Suppl 1): 11543-11548 CrossRef
  9. Sandom C., Faurby S., Sandel B., Svenning J.C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. Biol. Sci., 2014, 281(1787): 20133254 CrossRef
  10. Zeder M.A. Core questions in domestication research. PNAS USA, 2015, 112(11): 3191-3198 CrossRef
  11. Bar-On Y.M., Phillips R., Milo R. The biomass distribution on Earth. PNAS USA, 2018, 115(25): 6506-6511 CrossRef
  12. FAO. The state of the world’s animal genetic resources for food and agriculture. B. Rischkowsky, D. Pilling (eds.). FAO, Rome, 2007.
  13. Hazell P., Wood S. Drivers of change in global agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1491): 495-515 CrossRef
  14. Darvin Ch. Izmeneniya domashnikh zhivotnykh i kul’turnykh rasteniy. Tom 4 [Changes in domestic animals and cultivated plants. Volume 4]. Moscow-Leningrad, 1951 (in Russ.).
  15. Purugganan M.D. What is domestication? Trends Ecol. Evol., 2022, 37(8): 663-671 CrossRef
  16. Johnsson M., Henriksen R., Wright D. The neural crest cell hypothesis: no unified explanation for domestication. Genetics, 2021, 219(1): iyab097 CrossRef
  17. Zeder M.A. Pathways to animal domestication. In: Biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge University Press, Cambridge, 2012: 227-259 CrossRef
  18. Kruska D.C. On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain Behav. Evol., 2005, 65(2): 73-108 CrossRef
  19. Li L.F., Olsen K.M. To have and to hold: selection for seed and fruit retention during crop domestication. Curr. Top. Dev. Biol., 2016, 119: 63-109 CrossRef
  20. Mueller N.G., Horton E.T., Belcher M.E., Kistler L. The taming of the weed: developmental plasticity facilitated plant domestication. PLoS ONE, 2023, 8(4): e0284136 CrossRef
  21. Whitt S.R., Wilson L.M., Tenaillon M.I., Gaut B.S., Buckler E.S. Genetic diversity and selection in the maize starch pathway. PNAS USA, 2002, 99(20): 12959-12962 CrossRef
  22. Purugganan M.D. Evolutionary insights into the nature of plant domestication. Curr. Biol., 2019, 29(14): R705-R714 CrossRef
  23. Hazzouri K.M., Flowers J.M., Visser H.J., Khierallah H.S.M., Rosas U., Pham G.M., Meyer R.S., Johansen C.K., Fresquez Z.A., Masmoudi K., Haider N., El Kadri N., Idaghdour Y., Malek J.A., Thirkhill D., Markhand G.S., Krueger R.R., Zaid A., Purugganan M.D. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun., 2015, 6: 8824 CrossRef
  24. Singh R., Low E.T., Ooi L.C., Ong-Abdullah M., Nookiah R., Ting N.C., Marjuni M., Chan P.L., Ithnin M., Manaf M.A., Nagappan J., Chan K.L., Rosli R., Halim M.A., Azizi N., Budiman M.A., Lakey N., Bacher B., Van Brunt A., Wang C., Hogan M., He D., MacDonald J.D., Smith S.W., Ordway J.M., Martienssen R.A., Sambanthamurthi R. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat. Commun., 2014, 5: 4106 CrossRef
  25. Allan A.C., Hellens R.P., Laing W.A. MYB transcription factors that colour our fruit. Trends Plant Sci., 2008, 13(3): 99-102 CrossRef
  26. Ottoni C., Flink L.G., Evin A., Geörg C., De Cupere B., Van Neer W., Bartosiewicz L., Linderholm A., Barnett R., Peters J., Decorte R., Waelkens M., Vanderheyden N., Ricaut F.X., Cakirlar C., Cevik O., Hoelzel A.R., Mashkour M., Karimlu A.F., Seno S.S., Daujat J., Brock F., Pinhasi R., Hongo H., Perez-Enciso M., Rasmussen M., Frantz L., Megens H.J., Crooijmans R., Groenen M., Arbuckle B., Benecke N., Vidarsdottir U.S., Burger J., Cucchi T., Dobney K., Larson G. Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Mol. Biol. Evol., 2013, 30(4): 824-832 CrossRef
  27. Lee G.A., Crawford G.W., Liu L., Sasaki Y., Chen X. Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE, 2011, 6(11): e26720 CrossRef
  28. Glazko V.I. Gene and genomic levels of domestication signature (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(4): 659-672 CrossRef
  29. Glazko G.V., Koonin E.V., Rogozin I.B. Molecular dating: ape bones agree with chicken entrails. Trends Genet., 2005, 21(2): 89-92 CrossRef
  30. Wang L., Zhou S., Lyu T., Shi L., Dong Y., He S., Zhang H. Comparative genome analysis reveals the genomic basis of semi-aquatic adaptation in American mink (Neovison vison). Animals (Basel), 2022, 12(18): 2385 CrossRef
  31. Valipour S., Karimi K., Do D.N., Barrett D., Sargolzaei M., Plastow G., Wang Z., Miar Y. Genome-wide detection of selection signatures for pelt quality traits and coat color using whole-genome sequencing data in American Mink. Genes (Basel), 2022, 13(11): 1939 CrossRef
  32. Cai Z., Villumsen T.M., Asp T., Guldbrandtsen B., Sahana G., Lund M.S. SNP markers associated with body size and pelt length in American mink (Neovison vison). BMC Genet., 2018, 19(1): 103 CrossRef
  33. Martínez-Ainsworth N.E., Tenaillon M.I. Superheroes and masterminds of plant domestication. Comptes Rendus Biologies, 2016, 339(7-8): 268-273 CrossRef
  34. Raviv L., Jacobson S.L., Plotnik J.M., Bowman J., Lynch V., Benítez-Burraco A. Elephants as an animal model for self-domestication. PNAS USA., 2023, 120(15): e2208607120 CrossRef
  35. Gleeson B.T., Wilson L.A.B. Shared reproductive disruption, not neural crest or tameness, explains the domestication syndrome. Proc. Biol. Sci., 2023, 290(1995): 20222464 CrossRef
  36. Brooks J., Yamamoto S. The founder sociality hypothesis. Ecol. Evol., 2021, 11(21): 14392-14404 CrossRef
  37. Rodrigues A.M.M., Gardner A. Reproductive value and the evolution of altruism. Trends Ecol. Evol., 2022, 37(4): 346-358 CrossRef
  38. Ropars J., Giraud T. Convergence in domesticated fungi used for cheese and dry-cured meat maturation: beneficial traits, genomic mechanisms, and degeneration. Curr. Opin. Microbiol., 2022, 70: 102236 CrossRef
  39. Colino-Rabanal V.J., Rodríguez-Díaz R., Blanco-Villegas M.J., Peris S.J., Lizana M. Human and ecological determinants of the spatial structure of local breed diversity. Sci. Rep., 2018, 8: 6452 CrossRef
  40. El-Maarouf-Bouteau H. The seed and the metabolism regulation. Biology (Basel), 2022, 11(2): 168 CrossRef
  41. Mayer C. Order and complexity in the RNA world. Life (Basel), 2023, 13(3): 603 CrossRef
  42. Shi Y., Yu C., Ma W. Towards an RNA/peptides world by the direct RNA template mechanism: the emergence of membrane-stabilizing peptides in RNA-based protocells. Life (Basel), 2023, 13(2): 523 CrossRef
  43. Brueckner J., Martin W.F. Bacterial genes outnumber archaeal genes in eukaryotic genomes. Genome Biol. Evol., 2020, 12(4): 282-292 CrossRef
  44. Méheust R., Bhattacharya D., Pathmanathan J.S., McInerney J.O., Lopez P., Bapteste E. Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biol., 2018, 16(1): 30 CrossRef
  45. Al Jewari C., Baldauf S.L. An excavate root for the eukaryote tree of life. Sci. Adv., 2023, 9(17): eade4973 CrossRef
  46. La Fortezza M., Rendueles O., Keller H., Velicer G.J. Hidden paths to endless forms most wonderful: ecology latently shapes evolution of multicellular development in predatory bacteria. Commun. Biol., 2022, 5(1): 977 CrossRef
  47. Rendueles O., Zee P.C., Dinkelacker I., Amherd M., Wielgoss S., Velicer G.J. Rapid and widespread de novo evolution of kin discrimination. PNAS USA, 2015, 112(29): 9076-9081 CrossRef
  48. Geraldes A., Ferrand N., Nachman M.W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics, 2006, 173: 919-933 CrossRef
  49. Alves J.M., Carneiro M., Day J.P., Welch J.J., Duckworth J.A., Cox T.E., Letnic M., Strive T., Ferrand N., Jiggins F.M. A single introduction of wild rabbits triggered the biological invasion of Australia. PNAS USA, 2022, 119(35): e2122734119 CrossRef
  50. Adavoudi R., Pilot M. Consequences of hybridization in mammals: a systematic review. Genes (Basel), 2021, 13(1): 50 CrossRef
  51. Singh A., At V., Gupta K., Sharma S., Kumar S. Long non-coding RNA and microRNA landscape of two major domesticated cotton species. Comput. Struct. Biotechnol. J., 2023, 21: 3032-3044 CrossRef
  52. Jin S., Han Z., Hu Y., Si Z., Dai F., He L., Cheng Y., Li Y., Zhao T., Fang L., Zhang T. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Mol. Plant., 2023, 16(4): 678-693 CrossRef
  53. Ramakrishnan M., Satish L., Kalendar R., Narayanan M., Kandasamy S., Sharma A., Emamverdian A., Wei Q., Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int. J. Mol. Sci., 2021, 22(21): 11387 CrossRef
  54. Almojil D., Bourgeois Y., Falis M., Hariyani I., Wilcox J., Boissinot S. The Structural, functional and evolutionary impact of transposable elements in eukaryotes. Genes (Basel), 2021, 12(6): 918 CrossRef
  55. Glazko V.I., Kosovsky G.Yu., Glazko T.T. The sources of genome variability as domestication drivers (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(5): 832-851 CrossRef
  56. Kumar R.P., Senthilkumar R., Singh V., Mishra R.K. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays, 2010, 32(2): 165-174 CrossRef
  57. Jordan I.K., Rogozin I.B., Glazko G.V., Koonin E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet., 2003, 19(2): 68-72 CrossRef
  58. Choudhary M.N., Friedman R.Z., Wang J.T., Jang H.S., Zhuo X., Wang T. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol., 2020, 21(1): 16 CrossRef
  59. Bellefroid M., Rodari A., Galais M., Krijger P.H.L., Tjalsma S.J.D., Nestola L., Plant E., Vos E.S.M., Cristinelli S., Van Driessche B., Vanhulle C., Ait-Ammar A., Burny A., Ciuffi A., de Laat W., Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res., 2022, 50(6): 3190-3202 CrossRef
  60. Avramova Z., Tikhonov A., Chen M., Bennetzen J.L. Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Res., 1998, 26(3): 761-767 CrossRef
  61. Argentin J., Bolser D., Kersey P.J., Flicek P. Comparative analysis of repeat content in plant genomes, large and small. Front. Plant Sci., 2023, 14: 1103035 CrossRef
  62. Davidson E., Levin M. Gene regulatory networks. PNAS USA, 2005, 102(14): 4935 CrossRef
  63. Chuong E.B., Elde N.C., Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet., 2017, 18(2): 71-86 CrossRef
  64. Bourque G., Leong B., Vega V.B., Chen X., Lee Y.L., Srinivasan K.G., Chew J.L., Ruan Y., Wei C.L., Ng H.H., Liu E.T. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res., 2008, 18(11): 1752-1762 CrossRef
  65. Zattera M.L., Bruschi D.P. Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells, 2022, 11(21): 3373 CrossRef
  66. Papolu P.K., Ramakrishnan M., Mullasseri S., Kalendar R., Wei Q., Zou L.H., Ahmad Z., Vinod K.K., Yang P., Zhou M. Retrotransposons: how the continuous evolutionary front shapes plant genomes for response to heat stress. Front. Plant. Sci., 2022, 13: 1064847 CrossRef
  67. Niu X., Chen L., Kato A., Ito H. Regulatory mechanism of a heat-activated retrotransposon by DDR complex in Arabidopsis thaliana. Front. Plant Sci., 2022, 13: 1048957 CrossRef
  68. Le Q.H., Wright S., Yu Z., Bureau T. Transposon diversity in Arabidopsis thaliana. PNAS USA, 2000, 97(13): 7376-7381 CrossRef
  69. Bennetzen J.L. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev., 2005, 15(6): 621-627 CrossRef
  70. Zhou S., Wei F., Nguyen J., Bechner M., Potamousis K., Goldstein S., Pape L., Mehan M.R., Churas C., Pasternak S., Forrest D.K., Wise R., Ware D., Wing R.A., Waterman M.S., Livny M., Schwartz D.C. A single molecule scaffold for the maize genome. PLoS Genet., 2009, 5(11): e1000711 CrossRef
  71. Cheng C., An L., Li F., Ahmad W., Aslam M., Ul Haq M.Z., Yan Y., Ahmad R.M. Wide-range portrayal of AP2/ERF transcription factor family in maize (Zea mays L.) development and stress responses. Genes (Basel), 2023, 14(1): 194 CrossRef
  72. Xiong R., Chu Z., Peng X., Cui G., Li W., Dong L. Transcript-wide identification and expression pattern analysis to comprehend the roles of AP2/ERF genes under development and abiotic stress in Trichosanthes kirilowii. BMC Plant Biol., 2023, 23(1): 354 CrossRef
  73. Deneweth Jyu, Van de Peer Yyu, Vermeirssen V. Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum. BMC Genomics, 2022, 23(1): 18 CrossRef
  74. Bariah I., Gribun L., Kashkush K. Transposable elements are associated with genome-specific gene expression in bread wheat. Front. Plant Sci., 2023, 13: 1072232 CrossRef
  75. Voronova A., Rendón-Anaya M., Ingvarsson P., Kalendar R., Ruņģis D. Comparative study of pine reference genomes reveals transposable element interconnected gene networks. Genes (Basel), 2020, 11(10): 1216 CrossRef
  76. Voronova A. Retrotransposon expression in response to in vitro inoculation with two fungal pathogens of Scots pine (Pinus sylvestris L.). BMC Res. Notes, 2019, 12(1): 243 CrossRef
  77. Yang T., Wang D., Tian G., Sun L., Yang M., Yin X., Xiao J., Sheng Y., Zhu D., He H., Zhou Y. Chromatin remodeling complexes regulate genome architecture in Arabidopsis. The Plant Cell, 2022, 34(7): 2638-2651 CrossRef
  78. Mukherjee K., Moroz L.L. Transposon-derived transcription factors across metazoans. Front. Cell. Dev. Biol., 2023, 11: 1113046 CrossRef
  79. Dunn-Fletcher C.E., Muglia L.M., Pavlicev M., Wolf G., Sun M.A., Hu Y.C., Huffman E., Tumukuntala S., Thiele K., Mukherjee A., Zoubovsky S., Zhang X., Swaggart K.A., Lamm K.Y.B., Jones H., Macfarlan T.S., Muglia L.J. Anthropoid primate-specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLoS Biol., 2018, 16(9): e2006337 CrossRef
  80. Batista R.A., Moreno-Romero J., Qiu Y., van Boven J., Santos-González J., Figueiredo D.D., Köhler C. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife, 2019, 8: e50541 CrossRef
  81. Qiu Y., Köhler C. Mobility connects: transposable elements wire new transcriptional networks by transferring transcription factor binding motifs. Biochem. Soc. Trans., 2020, 48(3): 1005-1017 CrossRef
  82. Sharifi R., Ryu C.M. Social networking in crop plants: wired and wireless cross-plant communications. Plant Cell Environ., 2021, 44(4): 1095-1110 CrossRef
  83. Rosenberg E., Sharon G., Atad I., Zilber-Rosenberg I. The evolution of animals and plants via symbiosis with microorganisms. Environ. Microbiol. Rep., 2010, 2(4): 500-506 CrossRef
  84. Guerrero R., Margulis L., Berlanga M. Symbiogenesis: the holobiont as a unit of evolution. Int. Microbiol., 2013, 16(3): 133-143 CrossRef
  85. Feng L., Dong T., Jiang P., Yang Z., Dong A., Xie S.Q., Griffin C.H., Wu R. An ECO-EVO-DEVO genetic network model of stress response. Hortic. Res., 2022, 9: uhac135 CrossRef
  86. Christmas M.J., Kaplow I.M., Genereux D.P., Dong M.X., Hughes G.M., Li X., Sullivan P.F., Hindle A.G., Andrews G., Armstrong J.C., Bianchi M., Breit A.M., Diekhans M., Fanter C., Foley N.M., Goodman D.B., Goodman L., Keough K.C., Kirilenko B., Kowalczyk A., Lawless C., Lind A.L., Meadows J.R.S., Moreira L.R., Redlich R.W., Ryan L., Swofford R., Valenzuela A., Wagner F., Wallerman O., Brown A.R., Damas J., Fan K., Gatesy J., Grimshaw J., Johnson J., Kozyrev S.V., Lawler A.J., Marinescu V.D., Morrill K.M., Osmanski A., Paulat N.S., Phan B.N., Reilly S.K., Schäffer D.E., Steiner C., Supple M.A., Wilder A.P., Wirthlin M.E., Xue J.R., Zoonomia Consortium, Birren B.W., Gazal S., Hubley R.M., Koepfli K.P., Marques-Bonet T., Meyer W.K., Nweeia M., Sabeti P.C., Shapiro B., Smit A.F.A., Springer M.S., Teeling E.C., Weng Z., Hiller M., Levesque D.L., Lewin H.A., Murphy W.J., Navarro A., Paten B., Pollard K.S., Ray D.A., Ruf I., Ryder O.A., Pfenning A.R., Lindblad-Toh K., Karlsson E.K. Evolutionary constraint and innovation across hundreds of placental mammals. Science, 2023, 380(6643): eabn3943 CrossRef
  87. Davenport K.M., Massa A.T., Bhattarai S., McKay S.D., Mousel M.R., Herndon M.K., White S.N., Cockett N.E., Smith T.P.L., Murdoch B.M. Characterizing genetic regulatory elements in ovine tissues. Front. Genet., 2021, 12: 628849 CrossRef
  88. Xiang R., Berg I.V.D., MacLeod I.M., Hayes B.J., Prowse-Wilkins C.P., Wang M., Bolormaa S., Liu Z., Rochfort S.J., Reich C.M., Mason B.A., Vander Jagt C.J., Daetwyler H.D., Lund M.S., Chamberlain A.J., Goddard M.E. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. PNAS USA, 2019, 116(39): 19398-19408 CrossRef
  89. Naval-Sanchez M., Nguyen Q., McWilliam S., Porto-Neto L.R., Tellam R., Vuocolo T., Reverter A., Perez-Enciso M., Brauning R., Clarke S., McCulloch A., Zamani W., Naderi S., Rezaei H.R., Pompanon F., Taberlet P., Worley K.C., Gibbs R.A., Muzny D.M., Jhangiani S.N., Cockett N., Daetwyler H., Kijas J. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun., 2018, 9(1): 859 CrossRef
  90. Albert F.W., Kruglyak L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet., 2015, 16(4): 197-212 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)