PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2023.5.864eng

UDC: 579.64:579.262

Acknowledgements:
The work was carried out using the equipment of the Center for Collective Use Biomika (Department of biochemical research methods and nanobiotechnology of the Republican Center for Collective Use Agidel) and UNU KODINK.
Supported financially by the Russian Science Foundation, project RSF No. 22-24-00207

 

OPTIMIZATION OF THE SEARCH FOR HIGHLY EFFICIENT NODULE BACTERIA STRAINS FOR INOCULATION OF LEGUME PLANTS

An.Kh. Baymiev , I.S. Koryakov, E.S. Akimova, A.A. Vladimirova,
R.T. Matniyazov, Al.Kh. Baymiev

Institute of Biochemistry and Genetics, Ufa Research Center RAS, 71, Prospekt Oktyabrya, Ufa, 450054 Russia, e-mail baymiev@anrb.ru (✉ corresponding author), koryakov_igor@mail.ru, iv.katerina-bio@yandex.ru, vladimirovaw@bk.ru, rmat@mail.ru, baymiev@mail.ru  

ORCID:
Baymiev An.Kh. orcid.org/0000-0001-6637-9365
Vladimirova A.A. orcid.org/0000-0002-0409-7861
Koryakov I.S. orcid.org/0000-0001-5817-6779
Matniyazov R.T. orcid.org/0000-0002-7879-2795
Akimova E.S. orcid.org/0000-0002-3115-1106
Baymiev Al.Kh. orcid.org/0000-0003-0606-6740

Final revision received September 09, 2023
Accepted September 20, 2023

Highly effective strains of nodule bacteria are the main component of microfertilizers used in the cultivation of leguminous plants. Using artificial inoculation with rhizobia, it is possible to achieve a significant increase in the yield of this crop. The most common way to search for highly effective strains of these microorganisms is to obtain them from the nodules of the plants themselves with subsequent selection of strains that most effectively affect plant yield. In this work, we analyzed bacteria obtained from nodules collected at different stages of development of such leguminous plants as Trifolium hybridum L., Lotus corniculatus L., and Galega orientalis Lam. It is shown that each plant enters into symbiosis with only one specific type of bacteria, but with a large number of its genetic variants, each of which can potentially have individual symbiotic characteristics. The greatest variety of strains was found in the nodules of Trifolium hybridum, and the microsymbionts of Galega orientalis were characterized by uniformity. It was found that at the beginning of the development of all three plant species, the nodules are formed by the most diverse strains of rhizobia which have high nitrogen-fixing activity ranging from 3.17 to 32.70 N2·plant-1·h-1 for microsymbionts of the L. corniculatus, from 10.08 to 30.75 N2·plant-1·h-1 for microsymbionts of G. orientalis, from 9.91 to 32.42 N2·plant-1·h-1 for microsymbionts of T. hybridum. Among them, highly effective strains are found more often than in other periods. In the middle of the growing season, bacteria that form nodules on the roots of the studied leguminous plants have relatively leveled values of nitrogen fixation efficiency, from 6.35 to 19.13 N2·plant-1·h-1 for microsymbionts of the L. corniculatus, from 15.51 to 23.47 N2·plant-1·h-1 for microsymbionts G. orientalis, from 11.61 to 20.53 N2·plant-1·h-1 for microsymbionts of T. hybridum, and their activity of nitrogen fixation are lower compared to maximum activity found in strains from nodules at the beginning of the growing season. At the end of the life cycle, nodules on the roots of the analyzed plants are formed by microorganisms that fix nitrogen with different efficiency but are still inferior in this trait to the most active «spring» strains. Thus, we believe that the search for effective strains of nodule bacteria is most productive at the initial stage of plant development.

Keywords: rhizobia, leguminous plants, Lotus corniculatus L., Trifolium hybridum L., Galega orientalis Lam., stage of vegetation, nitrogen fixation, highly effective strains. 

 

REFERENCES

  1. Tereshchenko H.1I. Bioudobreniya na osnove mikroorganizmov [Biofertilizers based on microorganisms]. Tomsk, 2003 (in Russ.).
  2. Onischuk O.P., Kurchak O.N., Kimeklis A.K., Aksenova T.S., Andronov E.E., Provorov N.A. Biodiversity of the symbiotic systems formed by nodule bacteria Rhizobium leguminosarum with the leguminous plants of galegoidcomplex. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(1): 87-99 CrossRef
  3. Ulianich P.S., Belimov A.A., Kuznetsova I.G., Sazanova A.L., Yuzikhin O.S., Laktionov Yu.V., Karlov D.S., Vishnyakova M.A., Safronova V.I. Effectiveness of nitrogen-fixing symbiosis of guar (Cyamopsis tetragonoloba) with strains Bradyrhizobium retamae RCAM05275 and Ensifer aridi RCAM05276 in pot experiment. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(3): 555-565 CrossRef
  4. Provorov N.A., Tikhonovich I.A. Agricultural microbiology and symbiogenetics: synthesis of classical ideas and construction of highly productive agrocenoses (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(5): 821-831 CrossRef
  5. Provorov N.A., Vorob’ev N.I. Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza [Genetic basis of the evolution of plant-microbial symbiosis]. St. Petersburg, 2012 (in Russ.).
  6. Ferguson B.J., Mens C., Hastwell A.H., Zhang M., Su H., Jones C.H., Chu X., Gresshoff P.M. Legume nodulation: the host controls the party. Plant Cell Environ, 2019, 42(1): 41-51 CrossRef
  7. Lindström K., Mousavi S.A. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol., 2020, 13(5): 1314-1335 CrossRef
  8. Ledermann R., Schulte C.C.M., Poole P.S. How Rhizobia adapt to the nodule environment. J. Bacteriol., 2021, 203(12): e0053920 CrossRef
  9. Provorov N.A. Genetika, 1996, 32(8): 1029-1040 (in Russ.).
  10. Franche C., Lindström K., Elmerich C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil, 2009, 321: 35-59 CrossRef
  11. Sachs J.L., Ehinger M.O., Simms E.L. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. Journal of Evolutionary Biology, 2010, 23(5): 1075-1089 CrossRef
  12. Baymiev An.Kh., Ptitsyn K.G., Baymiev Al.Kh. Mikrobiologiya, 2010, 79(1): 123-128 CrossRef (in Russ.).
  13. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18(22): 6531-6535 CrossRef
  14. Laguerre G., Mavingui P., Allard M.R., Charnay M.P., Louvrier P., Mazurier S.I., Rigottrier-Gois L., Amarger N. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology, 1996, 62(6): 2029-2036 CrossRef
  15. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 1991, 173(2): 697-703 CrossRef
  16. Baymiev An.Kh., Ivanova E.S., Gumenko R.S., Chubukova O.V., Baymiev Al.Kh. Genetika, 2015, 51(12): 1359-1367 CrossRef (in Russ.).
  17. Umarov M.M. Assotsiativnaya azotfiksatsiya [Associative nitrogen fixation]. Moscow, 1989 (in Russ.).
  18. Boivin S., Ait Lahmidi N., Sherlock D., Bonhomme M., Dijon D., Heulin-Gotty K., Le-Queré A., Pervent M., Tauzin M., Carlsson G., Jensen E., Journet E.P., Lopez-Bellido R., Seidenglanz M., Marinkovic J., Colella S., Brunel B., Young P., Lepetit M. Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae. New Phytol., 2020, 226(2): 555-568 CrossRef
  19. Sijilmassi B., Filali-Maltouf A., Boulahyaoui H., Kricha A., Boubekri K., Udupa S., Kumar S., Amri A. Assessment of genetic diversity and symbiotic efficiency of selected Rhizobia strains nodulating lentil (Lens culinaris Medik.). Plants, 2020, 10(1): 15 CrossRef
  20. Lalitha S., Immanuel S.P. Biochemical characterization of Rhizobium and its impact on black gram and green gram plants. International Journal of Current Science, 2013, 9: 1-6.
  21. Yang J., Lan L., Jin Y., Yu N., Wang D., Wang E. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol., 2022, 64(2): 244-267 CrossRef
  22. Pervent M., Lambert I., Tauzin M., Karouani A., Nigg M., Jardinaud M.F., Severac D., Colella S., Martin-Magniette M.L., Lepetit M. Systemic control of nodule formation by plant nitrogen demand requires autoregulation-dependent and independent mechanisms. J. Exp. Bot., 2021, 72(22): 7942-7956 CrossRef
  23. Mwangi, S.N., Karanja N.K., Boga H., Kahindi J.H.P., Muigai A., Odee D., Mwenda G.M. Genetic diversity and symbiotic efficiency of legume nodulating bacteria from different land use systems in Taita Taveta, Kenya. Tropical and Subtropical Agroecosystems, 2011, 13(1): 109-118.
  24. Meghvansi M.K., Prasad K., Mahna S.K. Symbiotic potential, competitiveness and compatibility of native Bradyrhizobium japonicum isolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India, Saudi. Journal of Biological Science, 2010, 17: 303-310 CrossRef
  25. Sethi D., Mohanty S., Pattanayak S.K. Acid and salt tolerance behavior of Rhizobium isolates and their effect on microbial diversity in the rhizosphere of redgram (Cajanus cajan L.). Indian Journal of Biochemistry and Biophysics, 2019, 56(3): 245-252 CrossRef
  26. Rumyantseva M.L., Vladimirova M.E., Muntyan V.S., Stepanova G.V., Saksaganskaya A.S., Kozhemyakov A.P., Orlova A.G., Becker A., Simarov B.V. Highly effective root nodule inoculants of alfalfa (Medicago varia L.): molecular-genetic analysis and practical usage in cultivar creation. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(6): 1306-1323 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)