PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.5.948eng

UDC: 633.15:581.192:58.088

Acknowledgements:
Supported by GVM from Russian Science Foundation (grant No: 19-79-30062) as well as the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of Living Systems and Synthetic Biology”

 

USING INFRARED SPECTROSCOPY AND RAMAN SPECTROSCOPY TO EVALUATE THE CONFORMATION OF BIOMOLECULES IN MAIZE (Zea mays L.) LINES

C.N. Radenovich1, 5, G.V. Maksimov2, V.V. Shutova3, J. Hao4,
N.S. Delich1, M.D. Sechansky1, A.S. Popovich1

1Maize Research Institute, Zemun Polje, ul. Slobodana Bajicha 1, 11185 Belgrade-Zemun, Serbia, e-mail radenovic@sbb.rs (✉ corresponding author), ndelic@mrizp.rs, msecanski@mrizp.rs, dobropoljac@yahoo.com;
2Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow, 119234 Russia, e-mail maksimov@mail.ru (✉ corresponding author);
3Ogarev National Research Mordovia State University, 68, ul. Bolshevistskaya, Republic of Mordovia, Saransk, 430005 Russia, e-mail vshutova@yandex.ru;
4Shenzhen MSU-BIT University, Biology Department, No 299, Ruyi Road, Longgang District, Shenzhen, Guangdong, 518172 China, e-mail haojr@szmsubit.edu.cn;
5University of Belgrade, Faculty for Physical Chemistry, 12-16 Studentski trg, 11000 Belgrade, Srbija

ORCID:
Radenovich C.N. orcid.org/0000-0002-4997-7635
Delich N.S. orcid.org/0000-0003-4020-0114
Maksimov G.V. orcid.org/0000-0002-7377-0773
Sechansky M.D. orcid.org/0000-0003-2070-4366
Shutova V.V. orcid.org/0000-0001-6437-3621
Popovich A.S. orcid.org/0000-0002-4569-6799
Hao J. orcid.org/0000-0003-4256-5969

Received July 15, 2020

 

Currently, there are few non-invasive methods that allow you to control the content and conformation of molecules in plant cells and tissues, not only in the laboratory, but also in the field. Infrared microscopy and Raman spectroscopy (IR and Raman spectroscopy) are actively used to analyze the role of molecules of certain substances in crop breeding. Using methods of vibronic spectroscopy, we investigated changes in the content and conformation of chloroplast molecules of various maize lines. Using infrared (IR) spectroscopy (3500-3000 cm-1) it was found that in the chloroplasts, the proportion of vibrations of OH-groups and intramolecular and intermolecular H bonds is maximum for the maize line ZPPL 186, and vibrations of NH-groups of amides (proteins) is minimal for ZPPL 225. It has been proven that ZPPL 186 chloroplasts are characterized by the maximum proportion of stretching vibrations from alkane molecules, carboxylic acids (region 2920-2860 cm-1) and deformation vibrations of aromatic structures (band at 1000 cm-1), and for the line M1-3-3-sdms, the fraction of stretching vibrations of O=C=O bonds (band at 2300 cm-1) is characteristic. Using Raman spectroscopy (range of 1250-500 cm-1 and 1535-1400 cm-1), it was found that differences in the chloroplasts of different maize lines are associated with changes in the conformation of chloroplast carotenoid molecules (rather than cellulose molecules). It was found that in two samples (except ZPPL 225), carotenoid molecules are in the 15-trans form with different conformation of the polyene chain. We note that the conformation of carotenoids of the ZPPL 186 line is characterized by a minimum amount of rotation outside the plane of the polyene chain and has more pronounced vibrations of the lateral CH3-group. It was assumed that carotenoids of leaf chloroplasts of various maize lines lack interactions with aromatic amino acids of proteins. According to the authors, the combined use of IR and Raman spectroscopy of the leaf chloroplast fraction can be recommended for monitoring the content and conformation of biomolecules in maize breeding.

Keywords: Zea mays L., inbred line, leaf, chloroplast, Raman spectra, infrared spectra, conformation changes, carbohydrates, carotenoids, proteins, maize breeding.

 

REFERENCES

  1. Radosavljević M., Bekrić V., Božović I., Jakovljević J. Physical and chemical properties of various corn genotypes as a criterion of technological quality. Genetika, 2000, 32(3): 319-329.
  2. Konstantinov K., Mladeović Drinić S., Abđelkovič V., Babić M. Ethics in scientific results application: gene and life forms patenting. Genetika, 2010, 42(1): 195-208.
  3. Radenović C.N., Maksimov G.V., Tyutyaev E.V., Stanković G.J., Jovanović Z.V., Beljanski M.V. Detecting the phase transition in thylakoid membranes of maize inbred lines by means of delayed fluorescence. Plant Physiology and Biochemistry, 2014, 81: 208-211 CrossRef
  4. Grubbs B.A., Etter N.P., Slaughter W.E., Pittsford A.M., Smith C.R., Schmitt P.D. A low-cost beam-scanning second harmonic generation microscope with application for agrochemical development and testing. Analytical Chemistry, 2019, 91(18): 11723-11730 CrossRef
  5. Butler H.J., Martin F.L., Roberts M.R., Adams S., McAinsh M.R. Observation of nutrient uptake at the adaxial surface of leaves of tomato (Solanum lycopersicum) using Raman spectroscopy. Analytical Letters, 2020, 53(4): 536-562 CrossRef
  6. Hu F., Shi L., Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nature Methods, 2019, 16(9): 830-842 CrossRef
  7. Vlasov A.V., Maliar N.L., Bazhenov S.V., Nikelshparg E.I., Brazhe N.A., Vlasova A.D., Osipov S.D., Sudarev V.V., Ryzhykau Y.L., Bogorodskiy A.O., Zinovev E.V., Rogachev A.V., Manukhov I.V., Borshchevskiy V. I., Kuklin A. I., Pokorný J., Sosnovtseva O., Maksimov G.V., Gordeliy V.I. Raman scattering: from structural biology to medical applications. Crystals, 2020, 10(1): 38 CrossRef
  8. Schulz H., Baranska M.Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy, 2007, 43(1): 13-25CrossRef
  9. Eremina O.E., Semenova A.A., Sergeeva E.A., Brazhe N.A., Maksimov G.V., Shekhovtsova T.N., Gudilin E.A., Veselova I.A. Uspekhi khimii, 2018, 87(8): 741-770 CrossRef (in Russ.).
  10. Schiavon M., Pizzeghello D., Muscolo A., Vaccaro S., Francioso O., Nardi S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol., 2010, 36(6): 662-669 CrossRef
  11. Ertani A., Francioso O., Tinti A., Schiavon M., Pizzeghello D., Nardi S. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci., 2018, 9: 428 CrossRef
  12. Radenović Č.N., Maksimov G.V., Shutova V.V., Slatinskaya O.V., Protopopov F.F., Delić N.S., Grchić N.M., Pavlov J.M., Čamdžija Z.F. Complete study of nature and importance of spectral bands contained in infrared spectra of leaves of maize inbred lines with significant breeding properties. Russian Agricultural Sciences, 2019, 45(4): 334-339 CrossRef
  13. Vollhardt P.C., Schore N.E. Organic shemistry. W.H. Freeman and Company, United States, 1996.
  14. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 1986, 38: 181-364 CrossRef
  15. Sverdlov L.M., Kovner M.A., Krainov E.P. Kolebatel'nye spektry mnogoatomnykh molekul [Vibrational spectra of polyatomic molecules]. Moscow, 1970 (in Russ.).
  16. Merlin J. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure and Applied Chemistry, 1985, 57(5): 785-792 CrossRef
  17. Amir R.M., Anjum F.M., Khan M.I., Khan M.R., Pasha I., Nadeem M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat. J. Food Sci. Technol., 2013, 50: 1018-1023 CrossRef
  18. Tyutyaev E.V., Shutova V.V., Maksimov G.V., Radenovich Ch., Grodzinskii D.M. Fiziologiya rastenii i genetika, 2015, 47(2): 147-159 (in Russ.).
  19. Berthold D.A., Babcock G.T., Yocum C. F. A highly resolved, oxygen evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett., 1981, 134(2): 231-234 CrossRef
  20. Lovyagina E.R., Davletshina L.N., Kultysheva M.Yu., Timofeev K.N., Ivanov I.I., Semin B.K. Fiziologiya rastenii, 2005, 52(1): 12-20 (in Russ.).
  21. Shutova V., Yusipovich A., Parshina E., Zakharkin D., Revin V. Effect of particle size on the enzymatic hydrolysis of polysaccharides from ultrafine lignocellulose particles. Applied Biochemistry and Microbiology, 2012, 48(3): 312-317 CrossRef
  22. Radenović Č., Grodzinskij D.M., Filipović M. The prestigious maize inbred lines and hybrids with erect top leaves are characterised by a property of an efficient photosynthetic model and a satisfactory base for the further progress in breeding and selection. Fiziologiya i biokhimiya kul'turnykhrastenii, 2010, 42(3): 187-201.
  23. Shutova V.V., Tyutyaev E.V., Churin A.A., Ponomarev V.Yu, Belyakova G.A., Maksimov G.V. IR and Raman Spectroscopy in the study of carotenoids of Cladophora rivularis algae. Biophysics, 2016, 61(4): 601-605 CrossRef
  24. Robert B. The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. In: The photochemistry of carotenoids. New York, Boston, Dordrecht, London, Moscow, Kluwer Academic Publishers, 2004: 189-201.
  25. Hudson S.D., Chumanov G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Analytical and Bioanalytical Chemistry, 2009, 394(3): 679-686 CrossRef
  26. Ruban A.V., Berera R., Ilioaia C. van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 2007, 450: 575-578 CrossRef
  27. Gruszecki W.I., Gospodarek M., Grudzinski W. Mazur R, Gieczewska K, Garstka M. Light-induced change of configuration of the LHCII-Bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. J. Phys. Chem. B, 2009, 113: 2506-2512 CrossRef
  28. Todorenko D.A., Hao J., Slatinskaya O.V., Allakhverdiev E.S., Khabatova V.V., Ivanov A.D., Radenovic C.N., Matorin D.N., Alwasel S., Maksimov G.V., Allakhverdiev S.I. Effect of thiamethoxam on photosynthetic pigments and primary photosynthetic reactions in two maize genotypes (Zea mays). Functional Plant Biology, 2021, 48(10): 994-1004 CrossRef
  29. Radenović Č., Maksimov G.V., Grodzinskij M.D. Identification of organic molecules in kernels of maize inbred lines displayed with infrared spectra. Plant Physiology and Genetics (Kiev, Ukraine), 2015, 47(1/273): 15-24.
  30. Radenović, Č., Filipović M., Selaković D. The prestigious maize inbred lines with erect top leaves. The priority performance of the efficient photosynthetic model in breeding. Genetika, 2009, 41(1): 49-58 CrossRef

 

back