PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.5.868eng

UDC: 632.93

 

FUTURE DIRECTIONS FOR USE OF BIOLOGICAL AND BIORATIONAL HERBICIDES IN RUSSIA (review)

A.S. Golubev , A.O. Berestetskiy

All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,e-mail golubev100@mail.ru (✉ corresponding author), aberestetskiy@vizr.spb.ru

ORCID:
Golubev A.S. orcid.org/0000-0003-0303-7442
Berestetskiy A.O. orcid.org/0000-0002-0612-6996

Received July 6, 2021

 

The emergence of weed populations resistant to chemical herbicides leads to a widespread decrease in the effectiveness of the chemical control. This fact, along with the currently increasing consumer demand for organic food, leads to an awareness of the need to develop research on the development of biological means of protecting crops from weeds. Despite the fact that biological (BLH) and biorational herbicides (BRH) are being introduced in the market of weed control products in the United States, Canada, China and South Africa, no such products has been registered in the Russian Federation to date. At the same time, the development of research on the development of environmentally friendly means of weed control allows to count on a change in the existing situation in the foreseeable future (A.O. Berestetskiy, 2017; M. Triolet et al., 2020). The purpose of this literature review was to analyze the current range of chemical herbicides allowed for use in Russia in order to identify market niches that BLH and BRH may occupy in the near future. To assess the prospects of these products, first of all, the spectrum of their action was taken into account, due to the species specificity of plant pathogens, which is significantly narrower than the activity spectrum of chemical herbicides (A. Berestetsky et al., 2018; A. Berestetsky, 2021). The analysis was based on a list of pest organisms that are particularly dangerous for crops prepared by the All-Russian Research Institute for Plant Protection (2013), in which the following types of weeds were indicated: perennial sowthistle (Sonchus arvensis L.), Canada thistle (Cirsium setosum (Willd.) Bess.), field bindweed (Convolvulus arvensis L.), couch grass (Elytrigia repens (L.) Nevski), and wild oat (Avena fatua L.). The list was supplemented with two quarantine weeds, common ragweed (Ambrosia artemisiifolia L.) and Russian knapweed (Acroptilon repens DC.), which are limited in the territory of the Russian Federation, but are problematic for a number of regions. These types of weeds have different degrees of harmfulness in different crops (A.M. Shpanev, 2011). The analysis involved the most significant agricultural crops from the point of view of the structure of the arable land of the Russian Federation. The use of BLH and BRH seems most promising in orchards and vineyards, where, due to the exclusion of glyphosate-based herbicides, only gufosinate-ammonium is allowed for use (A.S. Golubev et al., 2018; 2019). In addition, BLH and BRH, used in combination with some herbicides, would increase the effectiveness of weed control and the duration of the protective effect. The risks of using BLH and BRH in orchards and vineyards do not look significant due to the relative isolation of these agroecosystems. Forage crops and greenhouse vegetables do not have much potential as niches for the use of BLH and BRH, forage crops due to low economic returns, and vegetables in greenhouses due to the peculiarities of their cultivation technology. The use of BLH and BRH in fields intended for sowing agricultural crops in the autumn period and in fallow fields looks promising. In the conditions of crop rotations, BLH and BRH can be applicable against perennial root-sprouting weeds and Russian knapweed during the growing season of soybeans, sunflower, and potatoes. For the last two crops, the use of BLH and BRH against common ragweed looks promising as well. It will be possible to occupy a niche associated with the destruction of grass weeds (such as couch grass or wild oat), in the conditions of the existing range of chemical herbicides, only for the suppression of resistant weed populations.

Keywords: bioherbicides, cereals, corn, soybean, sunflower, potato, orchard, Sonchus arvensis, Cirsium setosum, Convolvulus arvensis, Elytrigia repens, Avena fatua, Ambrosia artemisiifolia, Acroptilon repens.

 

REFERENCES

  1. Berestetskii A.O. Zashchita i karantin rastenii, 2017, 8: 9-14 (in Russ.).
  2. Triolet M., Guillemin J.-P., Andre O., Steinberg C. Fungal‐based bioherbicides for weed control: a myth or a reality? Weed Research, 2020, 60(1): 60-77 CrossRef
  3. Willoughby I.H., Seier M.K., Stokes V.J., Thomas S.E., Varia S. Synthetic herbicides were more effective than a bioherbicide based on Chondrostereum purpureum in reducing resprouting of Rhododendron ponticum, a host of Phytophthora ramorum in the UK. Forestry: An International Journal of Forest Research, 2015, 88(3): 336-344 CrossRef
  4. Tekiela D.R. Effect of the bioherbicide Pseudomonas fluorescens D7 on downy brome (Bromus tectorum). Rangeland Ecology & Management, 2020, 73(6): 753-755 CrossRef
  5. Soltys D., Krasuska U., Bogatek R., Gniazdowska A. Allelochemicals as bioherbicides — present and perspectives. In: Herbicides. Current research and case studies in use. A.J. Price, J.A. Kelton (eds.). IntechOpen, 2013 CrossRef
  6. Hershenhorn J., Casella F., Vurro M. Weed biocontrol with fungi: past, present and future. Biocontrol Science and Technology, 2016, 26(10): 1313-1328 CrossRef
  7. Berestetskiy A., Sokornova S. Production and stabilization of mycoherbicides. In: Biological approaches for controlling weeds. R. Radhakrishnan (ed.). IntechOpen, 2018 CrossRef
  8. Morin L. Annual progress in biological control of weeds with plant pathogens. Annual Review of Phytopathology, 2020, 58: 201-223 CrossRef
  9. Berestetskiy A. Development of mycoherbicides. In: Encyclopedia of mycology. Ó. Zaragoza, A. Casadevall (eds.). Elsevier, 2021, 2: 629-640 CrossRef
  10. Sparks T.C., Bryant R.J. Impact of natural products on discovery of, and innovation in, crop protection compounds. Pest Manag. Sci., 2021 CrossRef
  11. Cordeau S., Triolet M., Wayman S., Steinberg C., Guillemin J. Bioherbicides: dead in the water? A review of the existing products for integrated weed management. Crop Protection, 2016, 87: 44-49 CrossRef
  12. Nzioki H.S., Oyosi F., Morris C.E., Kaya E., Pilgeram A.L., Baker C.S., Sands D.C. Striga biocontrol on a toothpick: a readily deployable and inexpensive method for smallholder farmers. Frontiers in Plant Science, 2016, 7: 1121 CrossRef
  13. Treiber L., Pezolt C., Zeng H., Schrey H., Jungwirth S., Shekhar A., Stadler M., Bilitewski U., Erb-Brinkmann M., Schobert R. Dual agents: fungal macrocidins and synthetic analogues with herbicidal and antibiofilm activities. Antibiotics, 2021, 10(8): 1022 CrossRef
  14. Korres N.E., Burgos N.R., Travlos I., Vurro M., Gitsopoulos T.K., Varanasi V.K., Duke S.O., Chad Brabham P.K., Rouse C.E., Salas-Perez R. New directions for integrated weed management: modern technologies, tools and knowledge discovery. Advances in Agronomy, 2019, 155: 243-319 CrossRef
  15. Bailey K.L., Pitt W., Derby J., Walter S., Taylor W., Falk S. Efficacy of Phoma macrostoma, a bioherbicide for control of dandelion (Taraxacum officinale) following simulated rainfall conditions. The Americas Journal of Plant Science and Biotechnology, 2010, SI 2: 35-42.
  16. Dayan F.E., Duke S.O. Natural products for weed management in organic farming in the USA. Outlooks on Pest Management, 2010, 21(4): 156-160 CrossRef
  17. Shrestha A., Rodriguez A., Pasakdee S., Bañuelos G. Comparative efficacy of white mustard (Sinapis alba L.) and soybean (Glycine max L. Merr.) seed meals as bioherbicides in organic broccoli (Brassica oleracea Var. Botrytis) and spinach (Spinacea oleracea) production. Communications in Soil Science and Plant Analysis, 2015, 46(1): 33-46 CrossRef
  18. Mendes I.D.S., Rezende M.O.O. Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as postemergent bioherbicides: A green alternative for sustainable agriculture. Journal of Environmental Science and Health, Part B, 2014, 49(5): 374-380 CrossRef
  19. Raveau R., Fontaine J., Lounès-Hadj Sahraoui A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods, 2020, 9(3): 365 CrossRef
  20. Sarić-Krsmanović M., Umiljendić J.G., Radivojević L., Rajković M., Šantrić L., Đurović-Pejčev R. Chemical composition of Ambrosia trifida essential oil and phytotoxic effect on other plants. Chemistry & Biodiversity, 2020, 17(1): e1900508 CrossRef
  21. Mangao A., Arreola S., San Gabriel E., Salamanez K. Aqueous extract from leaves of Ludwigia hyssopifolia (G. Don) Exell as potential bioherbicide. Journal of the Science of Food and Agriculture, 2020, 100(3): 1185-1194 CrossRef
  22. Rahayuningsih S., Supriadi S. Herbicidal efficacy of acetic acid and citric acid base on broad leaf weeds of medicinal crops fields. Buletin Penelitian Tanaman Rempah dan Obat, 2016, 25(2): 137-143 CrossRef
  23. Lotina-Hennsen B., King-Díaz B., Pereda-Miranda R. Tricolorin a as a natural herbicide. Molecules, 2013, 18(1): 778-788 CrossRef
  24. Chen S., Kang Y., Zhang M., Wang X., Strasser R.J., Zhou B., Qiang S. Differential sensitivity to the potential bioherbicide tenuazonic acid probed by the JIP-test based on fast chlorophyll fluorescence kinetics. Environmental and Experimental Botany, 2015, 112: 1-15 CrossRef
  25. Spiridonov Yu.Ya., Zhemchuzhin S.G., Kleimenova I.Yu., Bosak G.S. Agrokhimiya, 2019, 6: 81-91 CrossRef (in Russ.).
  26. Graupner P.R., Gerwick B.C., Siddall T.L., Carr A.W., Clancy E., Gilbert J.R., Bailey K.L. Derby J.-A. Chlorosis inducing phytotoxic metabolites: new herbicides from Phoma macrostoma. In: ACS Symposium Series, Vol. 927. Natural products for pest management. A.M. Rimando, S.O. Duke (eds.). American Chemical Society, 2006: 37-47 CrossRef
  27. Irvine N.M., Yerkes C.N., Graupner P.R., Roberts R.E., Hahn D.R., Pearce C., Gerwick B.C. Synthesis and characterization of synthetic analogs of cinnacidin, a novel phytotoxin from Nectria sp. Pest. Manag. Sci., 2008, 64(9): 891-899 CrossRef
  28. Hahn D.R., Graupner P.R., Chapin E., Gray J., Heim D., Gilbert J.R., Gerwick B.C. Albucidin: a novel bleaching herbicide from Streptomyces albus subsp. chlorinus NRRL B-24108. The Journal of Antibiotics, 2009, 62(4): 191-194 CrossRef
  29. Gerwick B.C., Brewster W.K., deBoer G.J., Fields S.C., Graupner P.R., Hahn D.R., Pearce C.J., Schmitzer P.R., Webster J.D. Mevalocidin: A novel, phloem mobile phytotoxin from Fusarium DA056446 and Rosellinia DA092917. J. Chem. Ecol., 2013, 39: 253-261 CrossRef
  30. Quy T.N., Xuan T.D., Andriana Y., Tran H., Khanh T.D., Teschke R. Cordycepin isolated from Cordyceps militaris: its newly discovered herbicidal property and potential plant-based novel alternative to glyphosate. Molecules, 2019, 24(16): 2901 CrossRef
  31. Choi J.-S., Park N.-J., Lim H.-K., Ko Y.-K., Kim Y.-S., Ryu S.-Y., Hwang I.-T. Plumbagin as a new natural herbicide candidate for Sicyon angulatus control agent with the target 8-amino-7-oxononanoate synthase. Pesticide Biochemistry and Physiology, 2012, 103(3): 166-172 CrossRef
  32. Demasi S., Caser M., Vanara F., Fogliatto S., Vidotto F., Negre M., Trotta F., Scariot V. Ailanthone from Ailanthus altissima (Mill.) Swingle as potential natural herbicide. Scientia Horticulturae, 2019, 257: 108702 CrossRef
  33. Yan Y., Liu Q., Zang X., Yuan S., Bat-Erdene U., Nguyen C., Gan J., Zhou J., Jacobsen S. E., Tang Y. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature, 2018, 559: 415-418 CrossRef
  34. Maienfisch P., Mangelinckx S. Recent innovation in crop protection research. In: Recent highlights in the discovery and optimization of crop protection products /P. Maienfisch, S. Mangelinckx (eds.). Elsevier Inc, 2021: 1-23 CrossRef
  35. Rimando A.M., Duke S.O. Natural products for pest management. In: ACS Symposium Series, Vol. 927. Natural products for pest management. A.M. Rimando, S.O. Duke (eds.). American Chemical Society, 2006: 2-21 CrossRef
  36. Vereshchagin A.L., Zakhar'eva Yu.I. Ekologicheskii vestnik Severnogo Kavkaza, 2014, 10(1): 47-50 (in Russ.).
  37. Travlos I., Rapti E., Gazoulis I., Kanatas P., Tataridas A., Kakabouki I., Papastylianou P. The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy, 2020, 10(11): 1687 CrossRef
  38. Berestetskii A.O., Poluektova E.V., Mishchenko A.V., Pervushin A.L., Sabashuk YU.A., Dalinova A.A., Dubovik V.R. Materialy III Mezhdunarodnoi nauchnoi konferentsii «Sovremennoe sostoyanie, problemy i perspektivy razvitiya agrarnoi nauk» [Proc. III Int. Conf. «Current state, problems and prospects for the development of agricultural sciences»]. Yalta, 2018: 104-106 (in Russ.).
  39. Duke S., Owens D., Dayan F. The growing need for biochemical bioherbicides. In: ACS Symposium Series, Vol. 1172. Biopesticides: state of the art and future opportunities. A.D. Gross, J.R. Coats, S.O. Duke, J.N. Seiber (eds.). American Chemical Society, 2014: 31-43 CrossRef
  40. Materialy III Vserossiiskogo s"ezda po zashchite rastenii «Fitosanitarnaya optimizatsiya agroekosistem» [Proc. Of III All-Russian Plant Protection Congress «Phytosanitary optimization of agroecosystems»]. St. Petersburg, 2013, 1: 459-463 (in Russ.).
  41. Prikaz Ministerstva sel'skogo khozyaistva Rossiiskoi Federatsii ot 26 dekabrya 2007 g. N 673 «Ob utverzhdenii perechnya karantinnykh ob"ektov» (Zaregistrirovano v Minyuste RF 17 yanvarya 2008 g. N 10903) [Order of the Ministry of Agriculture of the Russian Federation of December 26, 2007 N 673 «On approval of the list of quarantine objects» (Registered in the Ministry of Justice of the Russian Federation on January 17, 2008 N 10903)] (in Russ.).
  42. Federal'naya sluzhba gosudarstvennoi statistiki. Sel'skoe khozyaistvo, okhota i lesnoe khozyaistvo. Available: https://www.gks.ru/enterprise_economy?print=1. Accessed: 01.06.2021 (in Russ.).
  43. Protasova L.D., Larina G.E. Agrokhimiya, 2009, 6: 67-85 (in Russ.).
  44. Shpanev A.M. Vestnik zashchity rastenii, 2011, 4: 57-70 (in Russ.).
  45. Shpanev A.M. Zashchita i karantin rastenii, 2012, 3: 40-42 (in Russ.).
  46. Shpanev A.M. Phytosanitary condition of buckwheat and harvest loss caused by harmful organisms on southeast of Central-Chernozem Zone. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 5(48): 106-112.
  47. Golubev A.S., Makhan'kova T.A., Svirina N.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2017, 1 (46): 80-84 (in Russ.).
  48. Golubev A.S., Makhan'kova T.A. Novye i netraditsionnye rasteniya i perspektivy ikh ispol'zovaniya, 2018, 13: 504-506 (in Russ.).
  49. Makhan'kova T.A., Golubev A.S. Zashchita i karantin rastenii, 2021, 1: 49-84 (in Russ.).
  50. Makhan'kova T.A., Golubev A.S. Zashchita i karantin rastenii, 2018, 2: 37-64 (in Russ.).
  51. Makhan'kova T.A., Golubev A.S. Zashchita i karantin rastenii, 2019, 2: 37-63 (in Russ.).
  52. Redyuk S.I. Vestnik zashchity rastenii, 2017, 2(92): 55-58 (in Russ.).
  53. Guske S., Schulz B., Boyle C. Biocontrol options for Cirsium arvense with indigenous fungal pathogens. Weed Research, 2004, 44(2): 107-116 CrossRef
  54. Müller E, Nentwig W. Plant pathogens as biocontrol agents of Cirsium arvense – an overestimated approach? NeoBiota, 2011, 11: 1-24 CrossRef
  55. Bailey K., Derby J.A., Bourdôt, G., Skipp B., Cripps M., Hurrell G., Saville D., Noble A. Plectosphaerella cucumerina as a bioherbicide for Cirsium arvense: proof of concept. BioControl,2017, 62: 693-704 CrossRef
  56. Natsional'nyi doklad o karantinnom fitosanitarnom sostoyanii territorii Rossiiskoi Federatsii v 2018 godu. Zashchita i karantin rastenii, 2019, 7: 6-14 (in Russ.).
  57. Silaev A.I., Polyakov S.S. Agrarnyi nauchnyi zhurnal, 2017, 4: 49-52 (in Russ.).
  58. Silaev A.I., Polyakov S.S., Makhan'kova T.A. Fermer. Povolzh'e, 2019, 6 (83): 70-74 (in Russ.).
  59. Ou X., Watson A.K. Mass culture of Subanguina picridis and its bioherbicidal efficacy on Acroptilon repens. Journal of Nematology, 1993, 25(1): 89-94.
  60. Ramezani S., Saharkhiz M.J., Ramezani F., Fotokian M.H. Use of essential oils as bioherbicides. Journal of Essential Oil Bearing Plants, 2008, 11(3): 319-327 CrossRef
  61. Trofimenko S.L., Rakova K.A. Rossiiskaya rinologiya, 2015, 1: 36-39 CrossRef (in Russ.).
  62. Makhan'kova T.A., Dolzhenko V.I. Zashchita i karantin rastenii, 2013, 10: 46-50 (in Russ.).
  63. Kuznetsova S.V., Bagrintseva V.N. Zashchita i karantin rastenii, 2019, 6: 41-43 (in Russ.).
  64. Golubev A.S. Study of the efficiency of a new herbicide benito on soybeans. Plant Protection News, 2019, 4(102): 54-59 CrossRef
  65. Luchinskii S.I., Makoveev A.V. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2011, 69: 401-412 (in Russ.).
  66. Esipenko L.P., Savva A.P., Telezhenko T.N., Zamotailov A.S., Khomitskii E.E. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Biologicheskaya zashchita rastenii — osnova stabilizatsii agroekosistem» [Proc. Int. Conf. «Biological plant protection the basis for stabilizing agroecosystems»]. Krasnodar, 2018: 387-392 (in Russ.).
  67. Dmitrović S., Perišić M., Stojić A. Živković S., Boljević J., Nestorović Živković J., Aničić N., Ristić M., Mišić D. Essential oils of two Nepeta species inhibit growth and induce oxidative stress in ragweed (Ambrosia artemisiifolia L.) shoots in vitro. Acta Physiologiae Plantarum, 2015,37: 64 CrossRef
  68. Lefebvre M., Leblanc M.L., Bourgeois G., Watson A.K. Intergenerational assessment of biofumigation on phenology of Ambrosia artemisiifolia and Abutilon theophrasti. Allelopathy Journal, 2019, 46(2): 163-184 CrossRef
  69. Luneva N.N. In: Agroekologicheskii atlas Rossii i sopredel'nykh stran: ekonomicheski znachimye rasteniya, ikh vrediteli, bolezni i sornye rasteniya /Pod redaktsiei A.N. Afonina, S.L. Grin, N.I. Dzyubenko, A.N. Frolova [In: Agroecological atlas of Russia and neighboring countries: economically important plants, their pests, diseases and weeds. A.N. Afonin, S.L. Grin, N.I. Dzyubenko, A.N. Frolov (eds.)]. Available: http://www.agroatlas.ru/ru/content/weeds/Elytrigia_repens. Accessed: 01.06.2021 (in Russ.).
  70. Noskova E.V. Vestnik APK Verkhnevolzh'ya, 2019, 2(46): 7-10 CrossRef (in Russ.).
  71. Provorova O.N., Panasin V.I., Grigorovich L.M. Problemy agrokhimii i ekologii, 2018, 1: 24-28 (in Russ.).
  72. Mirenkov Yu.A., Kazharskii V.R., Papsuev A.V., Bulavin L.A., Gvozdov A.P., Pyntikov S.A. Vestnik Belorusskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2020, 1: 68-73 (in Russ.).
  73. Ringselle B., De Cauwer B., Salonen J., Soukup J. A review of non-chemical management of couch grass (Elymus repens). Agronomy, 2020, 10(8): 1178 CrossRef
  74. Illarionov A.I. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 2019, 3(62): 78-93 CrossRef (in Russ.).
  75. Popov Yu.V., Rukin V.F., Khryukina E.I. Zashchita i karantin rastenii, 2013, 11: 3-5 (in Russ.).
  76. Kondrat'ev A.A. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2008, 1(39): 7-11 (in Russ.).
  77. Mortensen K., Hsiao A.I. Fungal infestation of seeds from seven populations of wild oats (Avena fatua L.) with different dormancy and viability characteristics. Weed Research, 1987, 27(4): 297-304 CrossRef
  78. de Luna L.Z., Kennedy A.C., Hansen J.C., Paulitz T.C., Gallagher R.S., Fuerst E.P. Mycobiota on wild oat (Avena fatua L.) seed and their caryopsis decay potential. Plant Health Progress, 2011, 12(1) CrossRef
  79. Carsten L.D., Johnston M.R., Douglas L.I., Sands D.C. A field trial of crown rust (Puccinia coronata f. sp. avenae) as a biocontrol agent of wild oats on San Clemente Island. Biological Control, 2000, 19(2): 175-181 CrossRef
  80. Hetherington S.D., Auld B.A. Host range of Drechslera avenacea, a fungus with potential for use as a biological control agent of Avena fatua. Australasian Plant Pathology, 2001, 30(3): 205-210 CrossRef
  81. Hetherington S.D., Smith H.E., Scanes M.G., Auld B.A. Effects of some environmental conditions on the effectiveness of Drechslera avenacea (Curtis ex Cooke) Shoem.: a potential bioherbicidal organism for Avena fatua L. Biological Control,2002, 24(2): 103-109 CrossRef
  82. Kastanias M.A., Chrysayi-Tokousbalides M. Herbicidal potential of pyrenophorol isolated from a Drechslera avenae pathotype. Pest. Manag. Sci., 2000, 56(3): 227-232 CrossRef
  83. Kastanias M.A., Chrysayi-Tokousbalides M. Bioactivity of the fungal metabolite (8R,16R)-(−)-pyrenophorin on graminaceous plants. J. Agric. Food. Chem., 2005, 53(15): 5943-5947 CrossRef
  84. Aliferis, K.A., Chrysayi-Tokousbalides, M. Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S,8R,13S,16R)-(−)-pyrenophorol using1h nuclear magnetic resonance fingerprinting. J. Agric. Food. Chem., 2006, 54(5): 1687-1692 CrossRef
  85. Benchaa S., Hazzit M., Abdelkrim H. Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chem. Biodiversity, 2018, 15(8): e1800202 CrossRef
  86. Benchaa S., Hazzit M., Zermane N., Abdelkrim H. Chemical composition and herbicidal activity of essential oils from two Labiatae species from Algeria, Journal of Essential Oil Research, 2019, 31(4): 335-346 CrossRef
  87. Abdelgaleil S., Abdel-Razeek N., Soliman S. Herbicidal activity of three sesquiterpene lactones on wild oat (Avena fatua) and their possible mode of action. Weed Science, 2009, 57(1): 6-9 CrossRef
  88. Anwar T., Qureshi H., Parveen N., Bashir R., Qaisar U., Munazir M., Yasmin S., Basit Z., Mahmood R., Nayyar B., Khani S., Khan S., Qureshi M., Wali M. Evaluation of bioherbicidal potential of Carica papaya leaves. Brazilian Journal of Biology, 2020, 80(3): 565-573 CrossRef
  89. Golubev A.S., Borushko I.P., Dolzhenko V.I. Sadovodstvo i vinogradarstvo, 2019, 4: 45-50 CrossRef (in Russ.).
  90. Chebanovskaya A.F., Mogilyuk N.T. Vestnik APK Stavropol'ya, 2014, 1(13): 42-45 (in Russ.).
  91. Zhang Y., Yang X., Zhu Y., Li L., Zhang Y., Li J., Song X., Qiang S. Biological control of Solidago canadensis using a bioherbicide isolate of Sclerotium rolfsii SC64 increased the biodiversity in invaded habitats. Biological Control, 2019, 139: 104093 CrossRef
  92. Camargo A., Stefanski F., Scapini T., Weirich S., Ulkovski C., Carezia C., Bordin E., Rossetto V., Júnior F., Galon L., Fongaro G., Mossi A., Treichel H. Resistant weeds were controlled by the combined use of herbicides and bioherbicides. Environmental Quality Management, 2019, 29: 37-42 CrossRef
  93. Cai X., Gu M. Bioherbicides in organic horticulture. Horticulturae, 2016, 2(2): 3 CrossRef
  94. Berestetskii A.O. Vestnik zashchity rastenii, 2017, 1(91): 5-12 (in Russ.).
  95. Poluektova E.V., Berestetskii A.O. Mikologiya i fitopatologiya, 2018, 6(52): 367-381 CrossRef (in Russ.).

 

back