PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.847eng

UDC: 633.18:581:577.2

Acknowledgements:
Supported financially from Russian Science Foundation, grant No. 19-16-00064

 

FEATURES OF RICE (Oryza sativa L.) VARIETIES FOR ORGANIC FARMING IN CONNECTION WITH MARKER ASSISTED BREEDING (review)

Yu.K. Goncharova1, 2 , E.M. Kharitonov1, N.A. Оchkas1, 2,
N.I. Gapishko1, Н.Н. Neschadim3

1Federal Rice Research Center, 3, Belozernii, Krasnodar, Russia 350921, e-mail yuliya_goncharova_20@mail.ru (corresponding author ), evgeniyharitonov46@mail.ru, gapishko1979@mail.ru;
2LLC Aratay Skolkovo, 7, ul. Nobelya, Moscow, Russia 143026, e-mail ochkasnikolay@mail.ru;
3Trubilin Kuban State Agrarian University, 13, ul. Kalinina, Krasnodar, Russia 350044, e-mail neschadim.n@kubsau.ru

ORCID:
Goncharova J.K. orcid.org/0000-0003-2643-7342
Gapishko N.I. orcid.org/0000-0002-3695-3001
Kharitonov E.M. orcid.org/0000-0002-4049-6173
Neschadim Н.Н. orcid.org/0000-0002-5113-7651
Оchkas N.A. orcid.org/0000-0003-4852-3356

Received June 4, 2020

Organic agriculture is actively developing worldwide with a 30 % annual increase (S.Y. Dhurai et al., 2014). Today, the market for organic products reaches more than $200 billion a year. Products grown by organic farming technologies cost 20 % and sometimes 100 % higher. However, decrease in crop yields in organic farming largely eliminates the cost advantage (G.N. Fadkin et al., 2015). The use of specialized varieties should increase the profitability of organic farming (V. Seufert et al., 2012). However, there is still no clear separation in generating breeding material for these technologies. Purpose of this work is to review characteristics that must be selected when creating rice varieties for organic farming and effective working methods. Variety for this technology should possess a number of characteristics, i.e. high adaptability to biotic and abiotic stresses, competitiveness of the genotype, efficiency of mineral nutrition and photosynthesis (T. Vanaja et al., 2013). Note, all of these traits are complex and largely interconnected. So, the competitiveness of the genotype is ensured by a number of features, i.e. high growth rate; effective shoot formation (tillering); morphotype with minimal shading in dense crops; high efficiency of photosynthesis for the full use of solar energy; high root absorption (E.T. van Bueren et al., 2011; J.K. Goncharova et al., 2018). Increasing specific adaptability to a complex of stresses requires more effort and does not guarantee a result due to a significant decrease in the effect of individual genes resulted from intralocus and intergenic interactions. In nature, a complex of factors acts on the plant, which depreciates specific adaptability. Specific resistance to pathogens, as a rule, is overcome in a very short time (A.H. Bruggen, 1995). The great promise of increasing the overall adaptability of plant due to non-specific adaptability is shown. The most polymorphic loci of the Russian rice varieties for non-specific adaptability associated with the efficiency of genetic systems providing the growth rate, photosynthesis, mineral nutrition are summarized (L. Huang et al., 2016). Intensive growth, high photosynthetic activity and the effectiveness of mineral nutrition increase the vitality, allow plants to pass stress sensitive phases as quickly as possible, which reduces the likelihood of damage caused by extreme temperatures or other factors that reduce viability, including during organic farming. In Russian rice varieties, Microsatellite markers RM154, RM600, RM550, RM347, RM240, RM154, and RM509 are associated with loci for the efficiency of photosynthesis, RM261, RM6314, RM126, RM463, RM405, RM509, RM242 are associated with loci for mineral nutrition, RM463, RM245, RM242, RM3276, RM5508, RM574, RM542 are associated with salt resistance, and RM261, RM405, RM463, RM242, RM6314 are linked to loci for seedling growth rates. The markers identified by us are located in the same chromosome regions as the genes that determine the germination energy, drought resistance, tolerance to low temperatures, the morphotype and size of the root system, the ratio of the aboveground to the underground part of the plant, the stability of cell membranes under stress conditions, and the photosynthetic potential of the variety (G.A. Manjunatha et al., 2017; J. Аli et al., 2018).

Keywords: rice, adaptability, abiotic stresses, drought, salinization, non-specific resistance, mineral nutrition, organic farming.

 

REFERENCES

  1. Lal R. Global potential of soil carbon sequestration to mitigate greenhouse effect. Critical Reviews in Plant Sciences, 2003, 22(2): 151-184 CrossRef
  2. Fad'kin G.N., Vinogradov D.V., Shchur A.V., Gogmachadze G.D. AgroEkoInfo, 2015, 4: 1-12 (in Russ.).
  3. Shchur A.V., Val'ko D.V., Vinogradov V.P. Problemy regional'noi ekologii, 2016, 3: 36-40 (in Russ.).
  4. Pimentel D., Hepperly P., Hanson J., Douds D., Seidel R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience, 2005, 55(7): 573-582 CrossRef
  5. Greene C. U.S.organic farming emerges in the 1990s: adoption of certified systems. Agriculture Information Bulletin, 2001, No. 770. Available: https://www.ers.usda.gov/webdocs/publications/42396/
    31544_aib770_002.pdf?v=2234.6. No date.
  6. Uphoff N., Altieri M. Alternatives to conventional modern agriculture for meeting world needs in the next century (Report of a conference on sustainable agriculture, evaluation of new paradigms and old practices, April 26-30, 1999, Bellagio, Italy). Cornell International Institute for Food, Agriculture and Development, Ithaca, NY, 1999.
  7. Hokazono S., Hayashi K. Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. Journal of Cleaner Production, 2012, 28: 101-112 CrossRef
  8. Martsinkyavichene A., Boguzhas V., Balnite S., Pupalene R., Velichka R. Pochvovedenie, 2013, 2: 219-225 (doi: 10.7868/S0032180X1302010X) (in Russ.).
  9. Khodus A.V. Na puti k ustoichivomu razvitiyu Rossii, 2004, 28: 3-7 (in Russ.).
  10. Kondrat'eva I.V., Khodus A.V. Na puti k ustoichivomu razvitiyu Rossii, 2004, 28: 7-9 (in Russ.).
  11. Polushkina T.M. Problemy teorii i praktiki upravleniya, 2016, 3: 133-142 (in Russ.).
  12. Starovoitova N.P. Vestnik Volgogradskogo instituta biznesa, 2015, 4(33): 226-230 (in Russ.).
  13. Bayramoglu Z., Gundogmus E. Cost efficiency on organic farming: a comparison between organic and conventional raisin-producing households in Turkey. Spanish Journal of Agricultural Research, 2008, 6(1): 3-11.
  14. Cavigelli M., Hima B., Hanson J., Teasdale J., Conklin A., Lu Y. Long-term economic performance of organic and conventional field crops in the mid-Atlantic region. Renewable Agriculture and Food Systems, 2009, 24(2): 102-119 CrossRef
  15. Hazra K.K., Swain D.K., Bohra A., Singh S.S., Kumar N., Nath C. P. Organic rice: potential production strategies, challenges and prospects. Organic Agriculture, 2018, 8: 39-56 CrossRef
  16. Kharitonov E.M., Ochkas N.A., Goncharova Yu.K., Sheleg V.A. Risovodstvo, 2019, 44(3): 50-56 (in Russ.).
  17. Lotter D., Seidel R., Liebhardt W. The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 2003, 18(3): 146-154 CrossRef
  18. Hanson J., Lichtenberg E., Peters S. Organic versus conventional grain production in the mid- Atlantic. An economic overview and farming system overview. American Journal of Alternative Agriculture, 1997, 12(1): 2-9 CrossRef
  19. Kovalev N.G., Baranovskii I.N. Organicheskie udobreniya v KHKHI veke (Biokonversiya organicheskogo syr'ya). Tver', 2006.
  20. Uvarov R.A. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva, 2015, 86: 139-147 (in Russ.).
  21. Dorais M. Organic production of vegetables: state of the art and challenges. Canadian Journal of Plant Science, 2008: 1055-1066 CrossRef
  22. Hepperly P., Seidel R., Pimentel D., Hanson J., Douds D. Jr. Organic farming enhances soil carbon and its benefits. In: Soil carbon management. J.M. Kimble, C.W. Rice, D. Reed, S. Mooney, R.F. Follett, R. Lal (eds.). CRC Press, Boca Raton, FL, USA, 2019: 129-153.
  23. Teasdale J., Coffman C., Mangum R. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agronomy Journal, 2000, 99(5): 1297-1305 CrossRef
  24. Moyer J., Nichols K., Bhosekar V. Fifteen year review summarizing effects of conventional and organic farming Systems on soils, nutrition, environment, economics and yields (1981-1995). Asian Journal of Science and Technology, 2017, 8(4): 4628-4634 CrossRef
  25. Fedulova E.A., Medvedev A.V., Kosinskiy P.D., Kononova S.A., Pobedash N. Modeling of the agribusiness enterprise activity on the basis of the balanced scorecard. Foods and Raw Materials, 2016, 4(1): 154-162 CrossRef
  26. Goncharova J.K., Kharitonov E.M. Rice tolerance to the impact of high temperatures. In: Agricultural research updates, V. 9. Nova Science Publishers, Inc., NY, 2015: 97-125.
  27. Chavas J., Posner J., Hedtcke J. Organic and conventional production systems in the Wisconsin Integrated Cropping Systems Trial: II. Economic and risk analysis 1993-2006. Agronomy Journal, 2009, 101(2): 288-295 CrossRef
  28. Voronkova N.A., Khamova O.F. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2009, 5: 24-29 (in Russ.).
  29. Dobrokhotov S.A., Anisimov A.I. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Razvitie zemledeliya v Nechernozem'e: problemy i ikh reshenie» [Proc. Int. Conf. «The development of agriculture in the Non-Black Earth region: problems and solutions»]. St. Petersburg, 2016: 119-124 (in Russ.).
  30. Goncharova J.K., Kharitonov E.M. Genetic control of traits determining phosphorus uptake by rice varieties (Oryza sativa L.). Vavilov Journal of Genetics and Breeding, 2015, 19(2): 197-204.
  31. Lammerts van Bueren E.T. Challenging new concepts and strategies for organic plant breeding and propagation. Proceedings of the EUCARPIA Meeting on Leafy Vegetables Genetics and Breeding, Noordwijkerhout, The Netherlands. Th.J.L. van Hintum, A. Lebeda, D. Pink, J.W. Schut (eds.). Centre for Genetic Resources, The Netherlands (CGN), Wageningen, The Netherlands, 2003: 17-22.
  32. Lammerts van Bueren E.T., Struik P.C., Jacobsen E. Ecological concepts in organic farming and their consequences for an organic crop ideotype. NJAS — Wageningen Journal of Life Sciences, 2002, 50(1): 1-26 CrossRef
  33. Morris M.L., Bellon M.R. Participatory plant breeding research: Opportunities and challenges for the international crop improvement system. Euphytica, 2004, 136: 21-35 CrossRef
  34. Mader P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U. Soil fertility and biodiversity in organic farming. Science, 2004, 296(5573): 1694-1697 CrossRef
  35. Seufert V., Ramankutty N., Foley J.A. Comparing the yields of organic and conventional agriculture. Nature, 2012, 485: 229-232 CrossRef
  36. Swer H., Dkhar M.S., Kayang H. Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. Journal of Organic Systems, 2011, 6(2): 3-12.
  37. Van Bruggen A.H. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Disease, 1995, 79: 976-984 CrossRef
  38. Heyden B., Lammerts van Bueren E.T. Bio-diversity of vegetables and cereals — chances for developments in organic agriculture. Naturschutzbund (NABU), Bonn, 2000.
  39. Leu A. Ameliorating the effects of climate change with organic systems. Journal of Organic Systems, 2009, 4(1): 4-7.
  40. Vanaja T., Mammootty K.P. ‘Kuthiru’ and ‘Orkayama’ — newly identified genetic resources from Kerala, India for salinity tolerance in Indica rice. Nature Proceedings, 2010 CrossRef
  41. Longping Y. Breeding of super hybrid rice. Proc. Int. rice research conference «Rice Research for food security and poverty alleviation». S. Peng, B. Hardy (eds.). International Rice Research Institute, Los Baños, Laguna (Philippines), 2001: 143-149.
  42. Zhang O. Strategies for developing green super rice. Proceedings of the National Academy of Sciences, 2007, 104(42): 16402-16409 CrossRef
  43. Vanaja T., Mammootty K.P., Govindan M. Development of organic indica rice cultivar (Oryza sativa L.) for the wetlands of Kerala. India through new concepts and strategies of crop improvement. Journal of Organic Systems, 2013, 8(2): 18-28.
  44. Tammis W.L.M., van den Brink W.J. Conventional, integrated and organic winter wheat production in the Netherlands in the period 1993-1997. Agriculture, Ecosystems and Environment, 1999, 76(1): 47-59.
  45. Lammerts van Bueren E.T., Jones S.S., Tamm L., Murphy K.M., Myers J.R., Leifert C., Messmer M.M.  The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS — Wageningen Journal of Life Sciences, 2011, 58(3-4): 193-205 CrossRef
  46. Kharitonov E.M., Goncharova Yu.K., Ochkas N.A., Sheleg V.A., Bolyanova S.V. Application of multidimensional methods to separate varieties on their response to environment factors. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(1): 152-160 CrossRef
  47. Goncharova J.K., Gontcharov S.V., Chicharova E.E. Localization of chromosome regions controlling high photosynthetic potential in Russian rice cultivars. Russian Journal of Genetics, 2018, 54(7): 796-804 CrossRef
  48. Akhtar N., Nazir M.F., Rabnawaz A., Mahmood T., Safdar M.E., Asif M., Rehman A. Estimation of heritability, correlation and path coefficient analysis in fine grain rice. The Journal of Animal & Plant Sciences, 2011, 21(4): 660-664.
  49. Kumar C. Correlation and path coefficient analysis of yield components in aerobic rice (Oryza sativa L.). The Bioscan, 2014, 9(Supplement on Genetics and Plant Breeding): 907-913.
  50. Nagaraju C., Sekhar R.M., Reddy H.K., Sudhakar P. Correlation between traits and path analysis coefficient for grain yield and other components in rice (Oryza sativa L.) genotypes. International Journal of Applied Biology and Pharmaceutical Technology, 2013, 4(3): 137-142.
  51. Ramakrishnan S.H., Anandakumar C.R, Saravanan S., Malini N. Association analysis of some yield traits in rice (Oryza sativa L.). Journal of Applied Sciences Research, 2006, 2(7): 402-404.
  52. Deshpande H.H., Devasenapathy P. Effect of green manuring and organic manures on yield, quality and economics of rice (Oryza sativa L.) under lowland condition. Karnataka Journal of Agricultural Sciences, 2010, 23(2): 235-238.
  53. Dhurai S.Y., Reddy D.M., Bhati B.K. Correlation and path coefficient analysis for yield and quality traits under organic fertilizer management in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 2014, 5(3): 581-587.
  54. Zahid M.A., Akhtar M., Sabir M., Manzoor Z., Awan T.H. Correlation and path analysis studies of yield and economic traits in Basmati rice (Oryza sativa L.). Asian Journal of Plant Sciences, 2006, 5(4): 643-645 CrossRef
  55. Ali J., Jewel Z.A., Mahender A., Anandan A., Hernandez J., Li Z. Molecular genetics and breeding for nutrient use efficiency in rice. Rice breeding platform. International Journal of Molecular Sciences Review, 2018, 19(6): 1762 CrossRef
  56. Goncharova Yu.K., Kharitonov E.M., Sheleg V.A., Bolyanova S.V. Rossiiskaya sel'skokhozyaistvennaya nauka, 2016, 6: 3-8 (in Russ.).
  57. Zhang Y.J., Dong Y.J., Zhang J.Z., Xiao K., Xu J.L., Terao H. Mapping QTLs for deficiency phosphorus response to root-growth of rice seedling. Rice Genetics Newsletter, 2006, 25: 36-37.
  58. Manjunatha G.A., Saravana Kumar M., Jayashree M. Character association and path analysis in rice (Oryza sativa L.) genotypes evaluated under organic management. Journal of Pharmacognosy and Phytochemistry, 2017, 6(6): 1053-1058.
  59. Hemamalini G.S., Shashidhar H.E., Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000, 112: 69-78 CrossRef
  60. Yue B., Xue W.Y., Xiong L.Z., Yu X.Q., Luo L.J., Cui K.H., Jin D.M., Xing Y.Z., Zhang Q.F. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 2006, 172: 1213-1228 CrossRef
  61. Robin S., Pathan M.S., Courtois B., Lafitte R., Carandang C., Lanceras S., Amante M., Nguyen H.T., Li Z. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theoretical and Applied Genetics, 2003, 107: 1288-1296 CrossRef
  62. Jiang G.H., He Y.Q., Xu C.G., Li X.H., Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theoretical and Applied Genetics, 2004, 108: 688-698 CrossRef
  63. Kharitonov E.M., Goncharova Y.K., Maliuchenko E.A. Genetics of the traits determining adaptability to abiotic stress in rice (Oryza sativa L.). Russian Journal of Genetics: Applied Research, 2017, 7(6): 684-697 CrossRef
  64. McCouch S.R., Teytelman L., Xu Y., Lobos K.B., Clare K., Walton M., Fu B., Maghirang R., Li Z., Xing Y., Zhang Q., Kono I., Yano M., Fjellstrom R., DeClerck G., Schneider D., Cartinhour S., Ware D., Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Research, 2002, 9(6): 257-279 CrossRef
  65. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 2001, 11: 1441-1452 CrossRef
  66. Choi Y.H., Lee S.J., Yoon D.B., Moon H.P., Ahn S.N. Mapping of quantitative trait loci for cold tolerance in weedy rice. Breeding Science,2004, 54: 373-380 CrossRef
  67. Mahender A., Anandan A., Pradhan S.K., Singh O.N. Traits-related QTLs and genes and their potential applications in rice improvement under low phosphorus condition. Archives of Agronomy and Soil Science, 2017, 64(4): 449-464 CrossRef
  68. Berry P.M., Sylvester-Bradley R., Philipps L., Hatch D.H., Cuttle S.P., Rayns F.W., Gosling P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use and Management, 2002, 18(s1): 248-255 CrossRef
  69. Bhadoria P.B.S., Prakash Y.S., Kar S., Rakshit A. Relative efficacy of organic manures on rice production in lateritic soil. Soil Use and Management, 2003, 19(1): 80-82 CrossRef
  70. Bhattacharyya P., Chakraborty A., Bhattacharya B., Chakrabarti K. Evaluation of MSW compost as a component of integrated nutrient management in wetland rice. Compost Science & Utilization, 2003, 11(4): 343-350 CrossRef
  71. Bi L., Zhang B., Liu G., Li Z., Liu Y., Ye C., Yu X., Lai T., Zhang J., Yin J., Liang Y. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agriculture, Ecosystems & Environment, 2009, 129(4): 534-541 CrossRef
  72. Goncharova Yu.K., Kharitonov E.M. On genetic and physiological mechanisms of salt resistance in rice Oryza sativa l. (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 3: 3-11 CrossRef (in Russ.).
  73. Champagne E.T., Bett-Garber K.L., Grimm C.C., McClung A.M. Effects of organic fertility management on physicochemical properties and sensory quality of diverse rice cultivars. Cereal Chemistry, 2007, 84(4): 320-327 CrossRef
  74. Champagne E.T., Bett-Garber K.L., Thomson J.L., Fitzgerald M.A. Unravelling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chemistry, 2009, 86(3): 274-280 CrossRef
  75. Hoad S., Topp C., Davies K. Selection of cereals for weed suppression in organic agriculture: a method based on cultivar sensitivity to weed growth. Euphytica, 2008, 163(3): 355-366 CrossRef
  76. Kharitonov E.M., Goncharova Yu.K., Goncharov S.V., Bruyako V.N. Molecular markers associated with high early growth rate of Russian rice (Oryza sativa L.) varieties. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 892-904 CrossRef
  77. Baldani J.I., Baldani V., Seldin L., Döbereiner J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic and Evolutionary Microbiology, 1986, 36(1): 86-93 CrossRef
  78. Chi F., Shen S.-H., Cheng H.-P., Jing Y.-X., Yanni Y.G., Dazzo F.B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 2005, 71(11): 7271-7278 CrossRef
  79. Feng B., Chen K., Cui Y., Wu Z., Zheng T., Zhu Y., Ali J., Wang B., Xu J., Zhang W., Li Z. Genetic dissection and simultaneous improvement of drought and low nitrogen tolerances by designed QTL pyramiding in rice. Frontiers in Plant Science, 2018, 9(9): 306 CrossRef
  80. Huang L., Jun Y.U., Jie Y.A., Zhang R., Yanchao B.A., Chengming S.U., Zhuang H. Relationships between yield, quality and nitrogen uptake and utilization of organically grown rice varieties. Pedosphere, 2016, 26(1): 85-97 CrossRef
  81. Jeyabal A., Kuppuswamy G. Recycling of organic wastes for the production of vermicompost and its response in rice—legume cropping system and soil fertility. European Journal of Agronomy, 2001, 15(3): 153-170 CrossRef
  82. Yorobe J.M. Jr., Ali J., Pede V., Rejesus R.M., Velarde O.P., Wang W. Yield and income effects of rice varieties with tolerance of multiple abiotic stresses: the case of green super rice (GSR) and flooding in the Philippines. Agricultural Economics, 2016, 47(3): 261-271 CrossRef 
  83. Van Quyen N., Sharma S.N. Relative effect of organic and conventional farming on growth, yield and grain quality of scented rice and soil fertility. Archives of Agronomy and Soil Science, 2003, 49(6): 623-629 CrossRef
  84. Xu M.-G., Li D.-C., Li J.-M., Qin D.-Z., Kazuyuki Y., Hosen Y. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in Hunan of Southern China. Agricultural Sciences in China, 2008, 7(10): 1245-1252 CrossRef
  85. Zheng J., Zhang X., Li L., Zhang P., Pan G. Effect of longterm fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agriculture, Ecosystems & Environment, 2007, 120(2-4): 129-138 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)